Cargando…

Polypyrrole Nanoenzymes as Tumor Microenvironment Modulators to Reprogram Macrophage and Potentiate Immunotherapy

Nanozyme‐based tumor catalytic therapy has attracted widespread attention in recent years, but its therapeutic outcome is drastically diminished by species of nanozyme, concentration of substrate, pH value, and reaction temperature, etc. Herein, a novel Cu‐doped polypyrrole nanozyme (CuP) with trien...

Descripción completa

Detalles Bibliográficos
Autores principales: Zeng, Weiwei, Yu, Mian, Chen, Ting, Liu, Yuanqi, Yi, Yunfei, Huang, Chenyi, Tang, Jia, Li, Hanyue, Ou, Meitong, Wang, Tianqi, Wu, Meiying, Mei, Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9376744/
https://www.ncbi.nlm.nih.gov/pubmed/35678111
http://dx.doi.org/10.1002/advs.202201703
Descripción
Sumario:Nanozyme‐based tumor catalytic therapy has attracted widespread attention in recent years, but its therapeutic outcome is drastically diminished by species of nanozyme, concentration of substrate, pH value, and reaction temperature, etc. Herein, a novel Cu‐doped polypyrrole nanozyme (CuP) with trienzyme‐like activities, including catalase (CAT), glutathione peroxidase (GPx), and peroxidase (POD), is first proposed by a straightforward one‐step procedure, which can specifically promote O(2) and ·OH elevation but glutathione (GSH) reduction in tumor microenvironment (TME), causing irreversible oxidative stress damage to tumor cells and reversing the redox balance. The PEGylated CuP nanozyme (CuPP) has been demonstrated to efficiently reverse immunosuppressive TME by overcoming tumor hypoxia and re‐educating macrophage from pro‐tumoral M2 to anti‐tumoral M1 phenotype. More importantly, CuPP exhibits hyperthermia‐enhanced enzyme‐mimic catalytic and immunoregulatory activities, which results in intense immune responses and almost complete tumor inhibition by further combining with αPD‐L1. This work opens intriguing perspectives not only in enzyme‐catalytic nanomedicine but also in macrophage‐based tumor immunotherapy.