Cargando…

Nanoionics from Biological to Artificial Systems: An Alternative Beyond Nanoelectronics

Ion transport under nanoconfined spaces is a ubiquitous phenomenon in nature and plays an important role in the energy conversion and signal transduction processes of both biological and artificial systems. Unlike the free diffusion in continuum media, anomalous behaviors of ions are often observed...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jianrui, Liu, Wenchao, Dai, Jiqing, Xiao, Kai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9376752/
https://www.ncbi.nlm.nih.gov/pubmed/35723422
http://dx.doi.org/10.1002/advs.202200534
Descripción
Sumario:Ion transport under nanoconfined spaces is a ubiquitous phenomenon in nature and plays an important role in the energy conversion and signal transduction processes of both biological and artificial systems. Unlike the free diffusion in continuum media, anomalous behaviors of ions are often observed in nanostructured systems, which is governed by the complex interplay between various interfacial interactions. Conventionally, nanoionics mainly refers to the study of ion transport in solid‐state nanosystems. In this review, to extent this concept is proposed and a new framework to understand the phenomena, mechanism, methodology, and application associated with ion transport at the nanoscale is put forward. Specifically, here nanoionics is summarized into three categories, i.e., biological, artificial, and hybrid, and discussed the characteristics of each system. Compared with nanoelectronics, nanoionics is an emerging research field with many theoretical and practical challenges. With this forward‐looking perspective, it is hoped that nanoionics can attract increasing attention and find wide range of applications as nanoelectronics.