Cargando…
The fractional-order discrete COVID-19 pandemic model: stability and chaos
This paper presents and investigates a new fractional discrete COVID-19 model which involves three variables: the new daily cases, additional severe cases and deaths. Here, we analyze the stability of the equilibrium point at different values of the fractional order. Using maximum Lyapunov exponents...
Autores principales: | Abbes, Abderrahmane, Ouannas, Adel, Shawagfeh, Nabil, Jahanshahi, Hadi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9376916/ https://www.ncbi.nlm.nih.gov/pubmed/35992382 http://dx.doi.org/10.1007/s11071-022-07766-z |
Ejemplares similares
-
The effect of the Caputo fractional difference operator on a new discrete COVID-19 model
por: Abbes, Abderrahmane, et al.
Publicado: (2022) -
On Chaos in the Fractional-Order Discrete-Time Unified System and Its Control Synchronization
por: Khennaoui, Amina-Aicha, et al.
Publicado: (2018) -
Chaos in Cancer Tumor Growth Model with Commensurate and Incommensurate Fractional-Order Derivatives
por: Debbouche, Nadjette, et al.
Publicado: (2022) -
Chaotic dynamics in a novel COVID-19 pandemic model described by commensurate and incommensurate fractional-order derivatives
por: Debbouche, Nadjette, et al.
Publicado: (2021) -
Chaos in fractional system with extreme events
por: Ouannas, Adel, et al.
Publicado: (2021)