Cargando…
Physics-Guided Descriptors for Prediction of Structural Polymorphs
[Image: see text] We develop a method combining machine learning (ML) and density functional theory (DFT) to predict low-energy polymorphs by introducing physics-guided descriptors based on structural distortion modes. We systematically generate crystal structures utilizing the distortion modes and...
Autores principales: | Grosso, Bastien F., Spaldin, Nicola A., Tehrani, Aria Mansouri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9376952/ https://www.ncbi.nlm.nih.gov/pubmed/35921428 http://dx.doi.org/10.1021/acs.jpclett.2c01876 |
Ejemplares similares
-
Computational analysis and predictive modeling of polymorph descriptors
por: Lee, Yugyung, et al.
Publicado: (2013) -
Physical and chemical descriptors for predicting interfacial thermal resistance
por: Wu, Yen-Ju, et al.
Publicado: (2020) -
Author Correction: Physical and chemical descriptors for predicting interfacial thermal resistance
por: Wu, Yen-Ju, et al.
Publicado: (2020) -
Magnetic materials: fundamentals and device applications
por: Spaldin, Nicola
Publicado: (2003) -
Magnetic Materials: Fundamentals and Applications
por: Spaldin, Nicola A
Publicado: (2010)