Cargando…
Recurrent neural network (RNN) model accelerates the development of antibacterial metronidazole derivatives
Metronidazole is a specific drug against trichomonas and anaerobic bacteria, and is widely used in the clinic. However, extensive clinical application is often accompanied by extensive side effects, so it is still of great significance to develop metronidazole derivatives with a new skeleton. Compar...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9377161/ https://www.ncbi.nlm.nih.gov/pubmed/36105994 http://dx.doi.org/10.1039/d2ra01807a |
_version_ | 1784768284133949440 |
---|---|
author | Chen, Nannan Yang, Lijuan Ding, Na Li, Guiwen Cai, Jiajing An, Xiaoli Wang, Zhijie Qin, Jie Niu, Yuzhen |
author_facet | Chen, Nannan Yang, Lijuan Ding, Na Li, Guiwen Cai, Jiajing An, Xiaoli Wang, Zhijie Qin, Jie Niu, Yuzhen |
author_sort | Chen, Nannan |
collection | PubMed |
description | Metronidazole is a specific drug against trichomonas and anaerobic bacteria, and is widely used in the clinic. However, extensive clinical application is often accompanied by extensive side effects, so it is still of great significance to develop metronidazole derivatives with a new skeleton. Compared with other traditional receptor-based drug design methods, the computational model based on a neural network has higher accuracy and reliability. In this work, a Recurrent Neural Network (RNN) model is applied to the discovery of metronidazole drugs with a new skeleton. Firstly, the generation model based on a Gated Recurrent Unit (GRU) is trained to generate an effective Simplified Molecular-Input Line-Entry System (SMILES) string library with high precision. Then, transfer learning is introduced to fine-tune the GRU model, and many molecules with structures similar to known active drugs are generated. After cluster analysis of the structures of the new compounds, 20 small molecular compounds with metronidazole structures of all different categories were selected, of which 19 may not belong to any published patents or applications. Through prediction and personal experience, the difficulty of synthesizing these 20 new structures was analyzed, and compound 0001 was chosen as our synthetic target, and a series of structures (8a–l) similar to compound 0001 were synthesized. Finally, the inhibitory activities of these compounds against bacteria E. coli, P. aeruginosa, B. subtilis and S. aureus were determined. The results showed that compound 8a–l had obvious inhibitory activity against these four bacteria, which proved the accuracy of our compound generation model. |
format | Online Article Text |
id | pubmed-9377161 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-93771612022-09-13 Recurrent neural network (RNN) model accelerates the development of antibacterial metronidazole derivatives Chen, Nannan Yang, Lijuan Ding, Na Li, Guiwen Cai, Jiajing An, Xiaoli Wang, Zhijie Qin, Jie Niu, Yuzhen RSC Adv Chemistry Metronidazole is a specific drug against trichomonas and anaerobic bacteria, and is widely used in the clinic. However, extensive clinical application is often accompanied by extensive side effects, so it is still of great significance to develop metronidazole derivatives with a new skeleton. Compared with other traditional receptor-based drug design methods, the computational model based on a neural network has higher accuracy and reliability. In this work, a Recurrent Neural Network (RNN) model is applied to the discovery of metronidazole drugs with a new skeleton. Firstly, the generation model based on a Gated Recurrent Unit (GRU) is trained to generate an effective Simplified Molecular-Input Line-Entry System (SMILES) string library with high precision. Then, transfer learning is introduced to fine-tune the GRU model, and many molecules with structures similar to known active drugs are generated. After cluster analysis of the structures of the new compounds, 20 small molecular compounds with metronidazole structures of all different categories were selected, of which 19 may not belong to any published patents or applications. Through prediction and personal experience, the difficulty of synthesizing these 20 new structures was analyzed, and compound 0001 was chosen as our synthetic target, and a series of structures (8a–l) similar to compound 0001 were synthesized. Finally, the inhibitory activities of these compounds against bacteria E. coli, P. aeruginosa, B. subtilis and S. aureus were determined. The results showed that compound 8a–l had obvious inhibitory activity against these four bacteria, which proved the accuracy of our compound generation model. The Royal Society of Chemistry 2022-08-15 /pmc/articles/PMC9377161/ /pubmed/36105994 http://dx.doi.org/10.1039/d2ra01807a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Chen, Nannan Yang, Lijuan Ding, Na Li, Guiwen Cai, Jiajing An, Xiaoli Wang, Zhijie Qin, Jie Niu, Yuzhen Recurrent neural network (RNN) model accelerates the development of antibacterial metronidazole derivatives |
title | Recurrent neural network (RNN) model accelerates the development of antibacterial metronidazole derivatives |
title_full | Recurrent neural network (RNN) model accelerates the development of antibacterial metronidazole derivatives |
title_fullStr | Recurrent neural network (RNN) model accelerates the development of antibacterial metronidazole derivatives |
title_full_unstemmed | Recurrent neural network (RNN) model accelerates the development of antibacterial metronidazole derivatives |
title_short | Recurrent neural network (RNN) model accelerates the development of antibacterial metronidazole derivatives |
title_sort | recurrent neural network (rnn) model accelerates the development of antibacterial metronidazole derivatives |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9377161/ https://www.ncbi.nlm.nih.gov/pubmed/36105994 http://dx.doi.org/10.1039/d2ra01807a |
work_keys_str_mv | AT chennannan recurrentneuralnetworkrnnmodelacceleratesthedevelopmentofantibacterialmetronidazolederivatives AT yanglijuan recurrentneuralnetworkrnnmodelacceleratesthedevelopmentofantibacterialmetronidazolederivatives AT dingna recurrentneuralnetworkrnnmodelacceleratesthedevelopmentofantibacterialmetronidazolederivatives AT liguiwen recurrentneuralnetworkrnnmodelacceleratesthedevelopmentofantibacterialmetronidazolederivatives AT caijiajing recurrentneuralnetworkrnnmodelacceleratesthedevelopmentofantibacterialmetronidazolederivatives AT anxiaoli recurrentneuralnetworkrnnmodelacceleratesthedevelopmentofantibacterialmetronidazolederivatives AT wangzhijie recurrentneuralnetworkrnnmodelacceleratesthedevelopmentofantibacterialmetronidazolederivatives AT qinjie recurrentneuralnetworkrnnmodelacceleratesthedevelopmentofantibacterialmetronidazolederivatives AT niuyuzhen recurrentneuralnetworkrnnmodelacceleratesthedevelopmentofantibacterialmetronidazolederivatives |