Cargando…
Trusting our machines: validating machine learning models for single-molecule transport experiments
In this tutorial review, we will describe crucial aspects related to the application of machine learning to help users avoid the most common pitfalls. The examples we present will be based on data from the field of molecular electronics, specifically single-molecule electron transport experiments, b...
Autores principales: | Bro-Jørgensen, William, Hamill, Joseph M., Bro, Rasmus, Solomon, Gemma C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9377421/ https://www.ncbi.nlm.nih.gov/pubmed/35686581 http://dx.doi.org/10.1039/d1cs00884f |
Ejemplares similares
-
Can We Trust Score Plots?
por: Bevilacqua, Marta, et al.
Publicado: (2020) -
Quantification of the Helicality of Helical Molecular
Orbitals
por: Bro-Jørgensen, William, et al.
Publicado: (2021) -
MoleculeNet: a benchmark for molecular machine learning
por: Wu, Zhenqin, et al.
Publicado: (2017) -
Longevity in Bovids Is Promoted by Sociality, But Reduced by Sexual Selection
por: Bro-Jørgensen, Jakob
Publicado: (2012) -
Evolution of the ungulate dewlap: thermoregulation rather than sexual selection or predator deterrence?
por: Bro-Jørgensen, Jakob
Publicado: (2016)