Cargando…

Foxa1 mediates eccrine sweat gland development through transcriptional regulation of Na-K-ATPase expression

Eccrine sweat glands (ESGs) perform critical functions in temperature regulation in humans. Foxa1 plays an important role in ESG maturation and sweat secretion. Its molecular mechanism, however, remains unknown. This study investigated the expression of Foxa1 and Na-K-ATPase (NKA) in rat footpads at...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Junhong, Zhang, Lei, Du, Lijie, Chen, Zixiu, Tang, Yue, Chen, Lijun, Liu, Xiang, You, Lei, Zhang, Yonghong, Fu, Xiaobing, Li, Haihong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Associação Brasileira de Divulgação Científica 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9377534/
https://www.ncbi.nlm.nih.gov/pubmed/35976271
http://dx.doi.org/10.1590/1414-431X2022e12149
Descripción
Sumario:Eccrine sweat glands (ESGs) perform critical functions in temperature regulation in humans. Foxa1 plays an important role in ESG maturation and sweat secretion. Its molecular mechanism, however, remains unknown. This study investigated the expression of Foxa1 and Na-K-ATPase (NKA) in rat footpads at different development stages using immunofluorescence staining, qRT-PCR, and immunoblotting. Also, bioinformatics analysis and Foxa1 overexpression and silencing were employed to evaluate Foxa1 regulation of NKA. The results demonstrated that Foxa1 was consistently expressed during the late stages of ESGs and had a significant role in secretory coil maturation during sweat secretion. Furthermore, the mRNA abundance and protein expression of NKA had similar accumulation trends to those of Foxa1, confirming their underlying connections. Bioinformatics analysis revealed that Foxa1 may interact with these two proteins via binding to conserved motifs in their promoter regions. Foxa1 gain-of-function and loss-of-function experiments in Foxa1-modified cells demonstrated that the activities of NKA were dependent on the presence of Foxa1. Collectively, these data provided evidence that Foxa1 may influence ESG development through transcriptional regulation of NKA expression.