Cargando…
Neural networks for self-adjusting mutation rate estimation when the recombination rate is unknown
Estimating the mutation rate, or equivalently effective population size, is a common task in population genetics. If recombination is low or high, optimal linear estimation methods are known and well understood. For intermediate recombination rates, the calculation of optimal estimators is more chal...
Autores principales: | Burger, Klara Elisabeth, Pfaffelhuber, Peter, Baumdicker, Franz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9377634/ https://www.ncbi.nlm.nih.gov/pubmed/35921376 http://dx.doi.org/10.1371/journal.pcbi.1010407 |
Ejemplares similares
-
The Infinitely Many Genes Model for the Distributed Genome of Bacteria
por: Baumdicker, Franz, et al.
Publicado: (2012) -
Impact of Loci Nature on Estimating Recombination and Mutation Rates in Chlamydia trachomatis
por: Ferreira, Rita, et al.
Publicado: (2012) -
The Detransition Rate Is Unknown
por: Cohn, J.
Publicado: (2023) -
On the Recombination Rate Estimation in the Presence of Population Substructure
por: Hecker, Julian, et al.
Publicado: (2015) -
Race Adjustment for Estimating Glomerular Filtration Rate Is Not Always Necessary
por: Zanocco, Juliana A., et al.
Publicado: (2012)