Cargando…

DS-7300a, a DNA Topoisomerase I Inhibitor, DXd-Based Antibody–Drug Conjugate Targeting B7-H3, Exerts Potent Antitumor Activities in Preclinical Models

B7-H3 is overexpressed in various solid tumors and has been considered as an attractive target for cancer therapy. Here, we report the development of DS-7300a, a novel B7-H3–targeting antibody–drug conjugate with a potent DNA topoisomerase I inhibitor, and its in vitro profile, pharmacokinetic profi...

Descripción completa

Detalles Bibliográficos
Autores principales: Yamato, Michiko, Hasegawa, Jun, Maejima, Takanori, Hattori, Chiharu, Kumagai, Kazuyoshi, Watanabe, Akiko, Nishiya, Yumi, Shibutani, Tomoko, Aida, Tetsuo, Hayakawa, Ichiro, Nakada, Takashi, Abe, Yuki, Agatsuma, Toshinori
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for Cancer Research 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9377751/
https://www.ncbi.nlm.nih.gov/pubmed/35149548
http://dx.doi.org/10.1158/1535-7163.MCT-21-0554
Descripción
Sumario:B7-H3 is overexpressed in various solid tumors and has been considered as an attractive target for cancer therapy. Here, we report the development of DS-7300a, a novel B7-H3–targeting antibody–drug conjugate with a potent DNA topoisomerase I inhibitor, and its in vitro profile, pharmacokinetic profiles, safety profiles, and in vivo antitumor activities in nonclinical species. The target specificity and species cross-reactivity of DS-7300a were assessed. Its pharmacologic activities were evaluated in several human cancer cell lines in vitro and xenograft mouse models, including patient-derived xenograft (PDX) mouse models in vivo. Pharmacokinetics was investigated in cynomolgus monkeys. Safety profiles in rats and cynomolgus monkeys were also assessed. DS-7300a specifically bound to B7-H3 and inhibited the growth of B7-H3–expressing cancer cells, but not that of B7-H3–negative cancer cells, in vitro. Additionally, treatment with DS-7300a and DXd induced phosphorylated checkpoint kinase 1, a DNA damage marker, and cleaved PARP, an apoptosis marker, in cancer cells. Moreover, DS-7300a demonstrated potent in vivo antitumor activities in high–B7-H3 tumor xenograft models, including various tumor types of high–B7-H3 PDX models. Furthermore, DS-7300a was stable in circulation with acceptable pharmacokinetic profiles in monkeys, and well tolerated in rats and monkeys. DS-7300a exerted potent antitumor activities against B7-H3–expressing tumors in in vitro and in vivo models, including PDX mouse models, and showed acceptable pharmacokinetic and safety profiles in nonclinical species. Therefore, DS-7300a may be effective in treating patients with B7-H3–expressing solid tumors in a clinical setting.