Cargando…
Study of Deep Learning-Based Legal Judgment Prediction in Internet of Things Era
Legal judgment prediction is the most typical application of artificial intelligence technology, especially natural language processing methods, in the judicial field. In a practical environment, the performance of algorithms is often restricted by the computing resource conditions due to the uneven...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9377845/ https://www.ncbi.nlm.nih.gov/pubmed/35978889 http://dx.doi.org/10.1155/2022/8490760 |
_version_ | 1784768417702608896 |
---|---|
author | Zheng, Min Liu, Bo Sun, Le |
author_facet | Zheng, Min Liu, Bo Sun, Le |
author_sort | Zheng, Min |
collection | PubMed |
description | Legal judgment prediction is the most typical application of artificial intelligence technology, especially natural language processing methods, in the judicial field. In a practical environment, the performance of algorithms is often restricted by the computing resource conditions due to the uneven computing performance of the devices. Reducing the computational resource consumption of the model and improving the inference speed can effectively reduce the deployment difficulty of the legal judgment prediction model. To improve the prediction accuracy, enhance the model inference speed, and reduce the model memory consumption, we propose a BERT knowledge distillation-based legal decision prediction model, called KD-BERT. To reduce the resource consumption in the model inference process, we use the BERT pretraining model with lower memory requirements to be the encoder. Then, the knowledge distillation strategy transfers the knowledge to the student model of the shallow transformer structure. Experiment results show that the proposed KD-BERT has the highest F1-score compared with traditional BERT models. Its inference speed is also much faster than the other BERT models. |
format | Online Article Text |
id | pubmed-9377845 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-93778452022-08-16 Study of Deep Learning-Based Legal Judgment Prediction in Internet of Things Era Zheng, Min Liu, Bo Sun, Le Comput Intell Neurosci Research Article Legal judgment prediction is the most typical application of artificial intelligence technology, especially natural language processing methods, in the judicial field. In a practical environment, the performance of algorithms is often restricted by the computing resource conditions due to the uneven computing performance of the devices. Reducing the computational resource consumption of the model and improving the inference speed can effectively reduce the deployment difficulty of the legal judgment prediction model. To improve the prediction accuracy, enhance the model inference speed, and reduce the model memory consumption, we propose a BERT knowledge distillation-based legal decision prediction model, called KD-BERT. To reduce the resource consumption in the model inference process, we use the BERT pretraining model with lower memory requirements to be the encoder. Then, the knowledge distillation strategy transfers the knowledge to the student model of the shallow transformer structure. Experiment results show that the proposed KD-BERT has the highest F1-score compared with traditional BERT models. Its inference speed is also much faster than the other BERT models. Hindawi 2022-08-08 /pmc/articles/PMC9377845/ /pubmed/35978889 http://dx.doi.org/10.1155/2022/8490760 Text en Copyright © 2022 Min Zheng et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Zheng, Min Liu, Bo Sun, Le Study of Deep Learning-Based Legal Judgment Prediction in Internet of Things Era |
title | Study of Deep Learning-Based Legal Judgment Prediction in Internet of Things Era |
title_full | Study of Deep Learning-Based Legal Judgment Prediction in Internet of Things Era |
title_fullStr | Study of Deep Learning-Based Legal Judgment Prediction in Internet of Things Era |
title_full_unstemmed | Study of Deep Learning-Based Legal Judgment Prediction in Internet of Things Era |
title_short | Study of Deep Learning-Based Legal Judgment Prediction in Internet of Things Era |
title_sort | study of deep learning-based legal judgment prediction in internet of things era |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9377845/ https://www.ncbi.nlm.nih.gov/pubmed/35978889 http://dx.doi.org/10.1155/2022/8490760 |
work_keys_str_mv | AT zhengmin studyofdeeplearningbasedlegaljudgmentpredictionininternetofthingsera AT liubo studyofdeeplearningbasedlegaljudgmentpredictionininternetofthingsera AT sunle studyofdeeplearningbasedlegaljudgmentpredictionininternetofthingsera |