Cargando…
A Fused Multidimensional EEG Classification Method Based on an Extreme Tree Feature Selection
When a brain-computer interface (BCI) is designed, high classification accuracy is difficult to obtain for motor imagery (MI) electroencephalogram (EEG) signals in view of their relatively low signal-to-noise ratio. In this paper, a fused multidimensional classification method based on extreme tree...
Autores principales: | Lin, Ruijing, Dong, Chaoyi, Ma, Pengfei, Ma, Shuang, Chen, Xiaoyan, Liu, Huanzi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9377856/ https://www.ncbi.nlm.nih.gov/pubmed/35978888 http://dx.doi.org/10.1155/2022/7609196 |
Ejemplares similares
-
Simultaneous Channel and Feature Selection of Fused EEG Features Based on Sparse Group Lasso
por: Wang, Jin-Jia, et al.
Publicado: (2015) -
Multidimensional Feature in Emotion Recognition Based on Multi-Channel EEG Signals
por: Li, Qi, et al.
Publicado: (2022) -
Evaluation of Feature Selection Methods for Classification of Epileptic Seizure EEG Signals
por: Sánchez-Hernández, Sergio E., et al.
Publicado: (2022) -
An Efficient Feature Subset Selection Algorithm for Classification of Multidimensional Dataset
por: Devaraj, Senthilkumar, et al.
Publicado: (2015) -
Tree Classification with Fused Mobile Laser Scanning and Hyperspectral Data
por: Puttonen, Eetu, et al.
Publicado: (2011)