Cargando…

Sports Injury Identification Method Based on Machine Learning Model

With the increasingly fierce competition in international competitive sports, the momentum of special training has increased. Sports injuries are becoming more and more serious, which restricts the further improvement of the level of athletes. How to solve the problem of prevention, treatment, and r...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Zexu, Zhang, Jun, Wu, Di
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9377869/
https://www.ncbi.nlm.nih.gov/pubmed/35978906
http://dx.doi.org/10.1155/2022/2794851
Descripción
Sumario:With the increasingly fierce competition in international competitive sports, the momentum of special training has increased. Sports injuries are becoming more and more serious, which restricts the further improvement of the level of athletes. How to solve the problem of prevention, treatment, and rehabilitation of sports injuries, so as to ensure the normal training and competition of athletes, is an important part of sports work. Machine learning can solve large-scale data problems that cannot be solved by human beings at present and has strong self-learning ability, self-optimization ability, and strong generalization ability. Therefore, the purpose of this study is to understand the characteristics of rhythmic gymnastics injuries and analyze their causes by investigating the injury status of elite rhythmic gymnasts. According to the characteristics of the project, the injury characteristics of the athletes themselves, and other factors, using scientific qualitative and quantitative indicators, the injury risk of key athletes in rhythmic gymnastics was evaluated. It also provides theoretical and practical references for preventing sports injuries, formulating and implementing sports injury rehabilitation programs. The experimental results show that the female vaulting risk in the five risk categories fluctuates from 179.62 to 365.8, ranking the first in the risk of acute sports injury.