Cargando…

Impact of ANN in Revealing of Viral Peptides

All organisms contain antimicrobial peptides (AMPs), which are a critical component of the innate immune system. These chemicals have the ability to suppress the growth of a variety of fungi, bacteria, and viruses. Because AMPs interact with structural components of the microbial cell membrane and h...

Descripción completa

Detalles Bibliográficos
Autores principales: Rajkumar, M., Bhukya, Shankar Nayak, Ahalya, N., Elumalai, G., Sivanandam, K., Almutairi, Khalid M. A., Alonazi, Wadi B., Soma, S. R., Urugo, Markos Makiso
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9377878/
https://www.ncbi.nlm.nih.gov/pubmed/35978632
http://dx.doi.org/10.1155/2022/7760734
Descripción
Sumario:All organisms contain antimicrobial peptides (AMPs), which are a critical component of the innate immune system. These chemicals have the ability to suppress the growth of a variety of fungi, bacteria, and viruses. Because AMPs interact with structural components of the microbial cell membrane and have a wide range of cellular targets, bacteria are unlikely to be able to develop resistance to them in the short term. The underlying structure of AMPs is critical in determining the selectivity with which they target their respective targets. As far as we know, peptides have not been tested in a lab to see if they can fight bacteria, fungus, and viruses in real life. In this paper, we develop an artificial neural network (ANN) using a back propagation neural network (BPNN) that enables optimal classification of tendency of a peptide sequence that involves the activities of antifungal, antibacterial, or antiviral. The BPNN is trained on the datasets collected across different repositories and then the overfitting is avoided using particle swarm optimization (PSO) algorithm. Hence, at the time of testing, the BPNN clearly finds the predicted samples belonging to the same classes and this avoids the problem of finding the false positives. The simulation is conducted to test the efficacy of the model against various metrics that includes accuracy, precision, recall, and f1-measure. The effectiveness of the BPNN-PSO model in classifying instances at a faster rate than other techniques is demonstrated by its performance. The principle is straightforward, it is not difficult to programme, it converges more quickly, and it generally offers a superior solution.