Cargando…

Derivation and Validation of the Management and Supervision Tool (MaST) Risk of Crisis (RoC) Algorithm Using Electronic Health Record (EHR) Data

AIMS: The Management and Supervision Tool (MaST) helps NHS mental health care professionals identify patients who are most likely to need psychiatric hospital admission or home treatment, due to severe mental illness, through a Risk of Crisis (RoC) algorithm driven by electronic health record (EHR)...

Descripción completa

Detalles Bibliográficos
Autores principales: Patel, Rashmi, Oram, Jamie, Hebden, Nick, Payne, Zo, Morse, Martin, Gadd, Caroline
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cambridge University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9378037/
http://dx.doi.org/10.1192/bjo.2022.229
_version_ 1784768465251336192
author Patel, Rashmi
Oram, Jamie
Hebden, Nick
Payne, Zo
Morse, Martin
Gadd, Caroline
author_facet Patel, Rashmi
Oram, Jamie
Hebden, Nick
Payne, Zo
Morse, Martin
Gadd, Caroline
author_sort Patel, Rashmi
collection PubMed
description AIMS: The Management and Supervision Tool (MaST) helps NHS mental health care professionals identify patients who are most likely to need psychiatric hospital admission or home treatment, due to severe mental illness, through a Risk of Crisis (RoC) algorithm driven by electronic health record (EHR) data analytics. We describe the derivation and validation of the MaST RoC algorithm, and its implementation to support preventative mental healthcare in the NHS. METHODS: The RoC algorithm was developed and evaluated with EHR data from six UK NHS trusts using Ordered Predictor List propensity scores informed by a priori weightings from pre-existing literature, as well as real-world evidence evaluating the associations of clinical risk factors with mental health crisis using NHS EHR data. Mental health crisis was defined as admission to a psychiatric hospital or acceptance to a community crisis service within a 28-day period. Predictor variables included age, gender, accommodation status, employment status, Mental Health Act (MHA) status (under section or Community Treatment Order), and previous mental health service contacts (including hospital admissions and crisis services). Data were analysed using Ordered Predictor List propensity scores. The algorithm was derived using structured EHR data from 2,620 patients in a single NHS trust and externally validated using data from 107,879 patients in five other NHS trusts. Qualitative and quantitative data on feasibility, acceptability and system efficiency impacts of MaST implementation were obtained through staff surveys and local audits. RESULTS: The factors associated with greatest propensity for mental health crisis included recent previous crisis, multiple previous crises, higher number of mental health service contacts in recent weeks, MHA section, accommodation status and employment status. The RoC algorithm identified 64% and 80% crises in its top quintile. Sentiment analysis of staff surveys suggested that the use of MaST improved productivity by reducing time taken to access patient information to support caseload management that was previously difficult to obtain through manual review of EHRs. The systems efficiency audit revealed a reduction in duration of crisis and inpatient admissions following MaST implementation. CONCLUSION: The MaST RoC algorithm supports the identification of people more likely to use crisis services in NHS mental health trusts, is feasible to implement, and improves systems efficiency. EHR-derived algorithms can support real-world clinical practice to improve outcomes in people receiving NHS mental healthcare.
format Online
Article
Text
id pubmed-9378037
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Cambridge University Press
record_format MEDLINE/PubMed
spelling pubmed-93780372022-08-18 Derivation and Validation of the Management and Supervision Tool (MaST) Risk of Crisis (RoC) Algorithm Using Electronic Health Record (EHR) Data Patel, Rashmi Oram, Jamie Hebden, Nick Payne, Zo Morse, Martin Gadd, Caroline BJPsych Open Research AIMS: The Management and Supervision Tool (MaST) helps NHS mental health care professionals identify patients who are most likely to need psychiatric hospital admission or home treatment, due to severe mental illness, through a Risk of Crisis (RoC) algorithm driven by electronic health record (EHR) data analytics. We describe the derivation and validation of the MaST RoC algorithm, and its implementation to support preventative mental healthcare in the NHS. METHODS: The RoC algorithm was developed and evaluated with EHR data from six UK NHS trusts using Ordered Predictor List propensity scores informed by a priori weightings from pre-existing literature, as well as real-world evidence evaluating the associations of clinical risk factors with mental health crisis using NHS EHR data. Mental health crisis was defined as admission to a psychiatric hospital or acceptance to a community crisis service within a 28-day period. Predictor variables included age, gender, accommodation status, employment status, Mental Health Act (MHA) status (under section or Community Treatment Order), and previous mental health service contacts (including hospital admissions and crisis services). Data were analysed using Ordered Predictor List propensity scores. The algorithm was derived using structured EHR data from 2,620 patients in a single NHS trust and externally validated using data from 107,879 patients in five other NHS trusts. Qualitative and quantitative data on feasibility, acceptability and system efficiency impacts of MaST implementation were obtained through staff surveys and local audits. RESULTS: The factors associated with greatest propensity for mental health crisis included recent previous crisis, multiple previous crises, higher number of mental health service contacts in recent weeks, MHA section, accommodation status and employment status. The RoC algorithm identified 64% and 80% crises in its top quintile. Sentiment analysis of staff surveys suggested that the use of MaST improved productivity by reducing time taken to access patient information to support caseload management that was previously difficult to obtain through manual review of EHRs. The systems efficiency audit revealed a reduction in duration of crisis and inpatient admissions following MaST implementation. CONCLUSION: The MaST RoC algorithm supports the identification of people more likely to use crisis services in NHS mental health trusts, is feasible to implement, and improves systems efficiency. EHR-derived algorithms can support real-world clinical practice to improve outcomes in people receiving NHS mental healthcare. Cambridge University Press 2022-06-20 /pmc/articles/PMC9378037/ http://dx.doi.org/10.1192/bjo.2022.229 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Patel, Rashmi
Oram, Jamie
Hebden, Nick
Payne, Zo
Morse, Martin
Gadd, Caroline
Derivation and Validation of the Management and Supervision Tool (MaST) Risk of Crisis (RoC) Algorithm Using Electronic Health Record (EHR) Data
title Derivation and Validation of the Management and Supervision Tool (MaST) Risk of Crisis (RoC) Algorithm Using Electronic Health Record (EHR) Data
title_full Derivation and Validation of the Management and Supervision Tool (MaST) Risk of Crisis (RoC) Algorithm Using Electronic Health Record (EHR) Data
title_fullStr Derivation and Validation of the Management and Supervision Tool (MaST) Risk of Crisis (RoC) Algorithm Using Electronic Health Record (EHR) Data
title_full_unstemmed Derivation and Validation of the Management and Supervision Tool (MaST) Risk of Crisis (RoC) Algorithm Using Electronic Health Record (EHR) Data
title_short Derivation and Validation of the Management and Supervision Tool (MaST) Risk of Crisis (RoC) Algorithm Using Electronic Health Record (EHR) Data
title_sort derivation and validation of the management and supervision tool (mast) risk of crisis (roc) algorithm using electronic health record (ehr) data
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9378037/
http://dx.doi.org/10.1192/bjo.2022.229
work_keys_str_mv AT patelrashmi derivationandvalidationofthemanagementandsupervisiontoolmastriskofcrisisrocalgorithmusingelectronichealthrecordehrdata
AT oramjamie derivationandvalidationofthemanagementandsupervisiontoolmastriskofcrisisrocalgorithmusingelectronichealthrecordehrdata
AT hebdennick derivationandvalidationofthemanagementandsupervisiontoolmastriskofcrisisrocalgorithmusingelectronichealthrecordehrdata
AT paynezo derivationandvalidationofthemanagementandsupervisiontoolmastriskofcrisisrocalgorithmusingelectronichealthrecordehrdata
AT morsemartin derivationandvalidationofthemanagementandsupervisiontoolmastriskofcrisisrocalgorithmusingelectronichealthrecordehrdata
AT gaddcaroline derivationandvalidationofthemanagementandsupervisiontoolmastriskofcrisisrocalgorithmusingelectronichealthrecordehrdata