Cargando…
Natural Language Processing of Electronic Patient Records to Predict Psychiatric Inpatients at Risk of Early Readmission to Hospital Using Predictive Models Derived Through Machine Learning
AIMS: Psychiatric readmissions cause a burden on the healthcare system, incur a monetary cost and cause additional distress to acutely unwell patients. This project explores the use of the free-text of electronic patient records to predict inpatients in psychiatric hospitals at risk of readmission u...
Autores principales: | Kapadi, Tarif, Luz, Saturnino |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9378236/ http://dx.doi.org/10.1192/bjo.2022.87 |
Ejemplares similares
-
Identifying perinatal self-harm in electronic healthcare records using natural language processing
por: Ayre, Karyn, et al.
Publicado: (2021) -
Pregnancy and contraceptive questioning within acute inpatient psychiatric admissions: are we asking enough?
por: Partington, Eleanor
Publicado: (2021) -
Hypercalcaemia and Primary Hyperparathyroidism – an Underappreciated Contributor to Psychiatric Presentations
por: Ghoneim, Fatma, et al.
Publicado: (2023) -
Audit on the monitoring of metabolic side effects of antipsychotics in acute inpatient psychiatric units at Fieldhead Hospital
por: En Tial, Stephanie Vel, et al.
Publicado: (2021) -
PREVENT: Assessing and Improving Knowledge of the Sodium Valproate Pregnancy Prevention Programme in Psychiatric Prescribing
por: Havens, Laura
Publicado: (2022)