Cargando…
Machine learning can improve the development of evidence-based dietary guidelines
Autores principales: | Bodnar, Lisa M, Kirkpatrick, Sharon I, Naimi, Ashley I |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9378580/ https://www.ncbi.nlm.nih.gov/pubmed/35757839 http://dx.doi.org/10.1017/S1368980022001392 |
Ejemplares similares
-
Use of Machine Learning to Estimate the Per-Protocol Effect of Low-Dose Aspirin on Pregnancy Outcomes: A Secondary Analysis of a Randomized Clinical Trial
por: Zhong, Yongqi, et al.
Publicado: (2022) -
Sleep: The Forgotten Heart Pill, and How We Can Improve it (Fellow's)
por: Kirkpatrick, By Scott B.
Publicado: (2023) -
Assessing Dietary Outcomes in Intervention Studies: Pitfalls, Strategies, and Research Needs
por: Kirkpatrick, Sharon I., et al.
Publicado: (2018) -
Evidence-Based Policymaking: What Human Service Agencies Can Learn from Implementation Science and Integrated Data Systems
por: Zanti, Sharon, et al.
Publicado: (2021) -
Idiopathic pulmonary fibrosis – clinical management guided by the evidence-based GRADE approach: what arguments can be made against transparency in guideline development?
por: Rochwerg, Bram, et al.
Publicado: (2016)