Cargando…

Atomic-scale 3D imaging of individual dopant atoms in an oxide semiconductor

The physical properties of semiconductors are controlled by chemical doping. In oxide semiconductors, small variations in the density of dopant atoms can completely change the local electric and magnetic responses caused by their strongly correlated electrons. In lightly doped systems, however, such...

Descripción completa

Detalles Bibliográficos
Autores principales: Hunnestad, K. A., Hatzoglou, C., Khalid, Z. M., Vullum, P. E., Yan, Z., Bourret, E., van Helvoort, A. T. J., Selbach, S. M., Meier, D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9378652/
https://www.ncbi.nlm.nih.gov/pubmed/35970843
http://dx.doi.org/10.1038/s41467-022-32189-0
_version_ 1784768565967060992
author Hunnestad, K. A.
Hatzoglou, C.
Khalid, Z. M.
Vullum, P. E.
Yan, Z.
Bourret, E.
van Helvoort, A. T. J.
Selbach, S. M.
Meier, D.
author_facet Hunnestad, K. A.
Hatzoglou, C.
Khalid, Z. M.
Vullum, P. E.
Yan, Z.
Bourret, E.
van Helvoort, A. T. J.
Selbach, S. M.
Meier, D.
author_sort Hunnestad, K. A.
collection PubMed
description The physical properties of semiconductors are controlled by chemical doping. In oxide semiconductors, small variations in the density of dopant atoms can completely change the local electric and magnetic responses caused by their strongly correlated electrons. In lightly doped systems, however, such variations are difficult to determine as quantitative 3D imaging of individual dopant atoms is a major challenge. We apply atom probe tomography to resolve the atomic sites that donors occupy in the small band gap semiconductor Er(Mn,Ti)O(3) with a nominal Ti concentration of 0.04 at. %, map their 3D lattice positions, and quantify spatial variations. Our work enables atomic-level 3D studies of structure-property relations in lightly doped complex oxides, which is crucial to understand and control emergent dopant-driven quantum phenomena.
format Online
Article
Text
id pubmed-9378652
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-93786522022-08-17 Atomic-scale 3D imaging of individual dopant atoms in an oxide semiconductor Hunnestad, K. A. Hatzoglou, C. Khalid, Z. M. Vullum, P. E. Yan, Z. Bourret, E. van Helvoort, A. T. J. Selbach, S. M. Meier, D. Nat Commun Article The physical properties of semiconductors are controlled by chemical doping. In oxide semiconductors, small variations in the density of dopant atoms can completely change the local electric and magnetic responses caused by their strongly correlated electrons. In lightly doped systems, however, such variations are difficult to determine as quantitative 3D imaging of individual dopant atoms is a major challenge. We apply atom probe tomography to resolve the atomic sites that donors occupy in the small band gap semiconductor Er(Mn,Ti)O(3) with a nominal Ti concentration of 0.04 at. %, map their 3D lattice positions, and quantify spatial variations. Our work enables atomic-level 3D studies of structure-property relations in lightly doped complex oxides, which is crucial to understand and control emergent dopant-driven quantum phenomena. Nature Publishing Group UK 2022-08-15 /pmc/articles/PMC9378652/ /pubmed/35970843 http://dx.doi.org/10.1038/s41467-022-32189-0 Text en © The Author(s) 2022, corrected publication 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Hunnestad, K. A.
Hatzoglou, C.
Khalid, Z. M.
Vullum, P. E.
Yan, Z.
Bourret, E.
van Helvoort, A. T. J.
Selbach, S. M.
Meier, D.
Atomic-scale 3D imaging of individual dopant atoms in an oxide semiconductor
title Atomic-scale 3D imaging of individual dopant atoms in an oxide semiconductor
title_full Atomic-scale 3D imaging of individual dopant atoms in an oxide semiconductor
title_fullStr Atomic-scale 3D imaging of individual dopant atoms in an oxide semiconductor
title_full_unstemmed Atomic-scale 3D imaging of individual dopant atoms in an oxide semiconductor
title_short Atomic-scale 3D imaging of individual dopant atoms in an oxide semiconductor
title_sort atomic-scale 3d imaging of individual dopant atoms in an oxide semiconductor
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9378652/
https://www.ncbi.nlm.nih.gov/pubmed/35970843
http://dx.doi.org/10.1038/s41467-022-32189-0
work_keys_str_mv AT hunnestadka atomicscale3dimagingofindividualdopantatomsinanoxidesemiconductor
AT hatzoglouc atomicscale3dimagingofindividualdopantatomsinanoxidesemiconductor
AT khalidzm atomicscale3dimagingofindividualdopantatomsinanoxidesemiconductor
AT vullumpe atomicscale3dimagingofindividualdopantatomsinanoxidesemiconductor
AT yanz atomicscale3dimagingofindividualdopantatomsinanoxidesemiconductor
AT bourrete atomicscale3dimagingofindividualdopantatomsinanoxidesemiconductor
AT vanhelvoortatj atomicscale3dimagingofindividualdopantatomsinanoxidesemiconductor
AT selbachsm atomicscale3dimagingofindividualdopantatomsinanoxidesemiconductor
AT meierd atomicscale3dimagingofindividualdopantatomsinanoxidesemiconductor