Cargando…
Efficient separation of butane isomers via ZIF-8 slurry on laboratory- and pilot-scale
n-butane and isobutane are important petrochemical raw materials. Their separation is challenging because of their similar properties, including boiling point. Here, we report a zeolitic imidazolate framework-8 (ZIF-8)/N,N-Dimethylpropyleneurea (DMPU)-water slurry as sorption material to separate bu...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9378693/ https://www.ncbi.nlm.nih.gov/pubmed/35970852 http://dx.doi.org/10.1038/s41467-022-32418-6 |
Sumario: | n-butane and isobutane are important petrochemical raw materials. Their separation is challenging because of their similar properties, including boiling point. Here, we report a zeolitic imidazolate framework-8 (ZIF-8)/N,N-Dimethylpropyleneurea (DMPU)-water slurry as sorption material to separate butane mixtures. The isobutane/n-butane selectivity of ZIF-8/DMPU-water slurries is as high as 890 with high kinetic performance, which transcends the upper limit of various separation materials or membranes reported in the literature. More encouragingly, a continuous pilot separation device was established, and the test results show that the purity and recovery ratio of isobutane product are 99.46 mol% and 87%, respectively, which are superior to the corresponding performance (98.56 mol% and 54%) of the industrial distillation tower. To the best of our knowledge, the use of metal-organic frameworks (MOFs) for gas separation in pilot scale remains underexplored, and thus this work provides a step forward to the commercial application of MOFs in gas separation. |
---|