Cargando…
Predicting preterm birth through vaginal microbiota, cervical length, and WBC using a machine learning model
An association between the vaginal microbiome and preterm birth has been reported. However, in practice, it is difficult to predict premature birth using the microbiome because the vaginal microbial community varies highly among samples depending on the individual, and the prediction rate is very lo...
Autores principales: | Park, Sunwha, Moon, Jeongsup, Kang, Nayeon, Kim, Young-Han, You, Young-Ah, Kwon, Eunjin, Ansari, AbuZar, Hur, Young Min, Park, Taesung, Kim, Young Ju |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9378785/ https://www.ncbi.nlm.nih.gov/pubmed/35983325 http://dx.doi.org/10.3389/fmicb.2022.912853 |
Ejemplares similares
-
Transition in vaginal Lactobacillus species during pregnancy and prediction of preterm birth in Korean women
por: You, Young-Ah, et al.
Publicado: (2022) -
Identification of Potential Biomarkers in the Cervicovaginal Fluid by Metabolic Profiling for Preterm Birth
por: Ansari, AbuZar, et al.
Publicado: (2020) -
Identification of Indicators for Preterm Birth Using Retinoid Metabolites
por: You, Young-Ah, et al.
Publicado: (2021) -
Molecular Mechanism of Microbiota Metabolites in Preterm Birth: Pathological and Therapeutic Insights
por: Ansari, AbuZar, et al.
Publicado: (2021) -
Ureaplasma and Prevotella colonization with Lactobacillus abundance during pregnancy facilitates term birth
por: Park, Sunwha, et al.
Publicado: (2022)