Cargando…

Parametric longitudinal coupling between a high-impedance superconducting resonator and a semiconductor quantum dot singlet-triplet spin qubit

Coupling qubits to a superconducting resonator provides a mechanism to enable long-distance entangling operations in a quantum computer based on spins in semiconducting materials. Here, we demonstrate a controllable spin-photon coupling based on a longitudinal interaction between a spin qubit and a...

Descripción completa

Detalles Bibliográficos
Autores principales: Bøttcher, C. G. L., Harvey, S. P., Fallahi, S., Gardner, G. C., Manfra, M. J., Vool, U., Bartlett, S. D., Yacoby, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9378792/
https://www.ncbi.nlm.nih.gov/pubmed/35970821
http://dx.doi.org/10.1038/s41467-022-32236-w
_version_ 1784768587291951104
author Bøttcher, C. G. L.
Harvey, S. P.
Fallahi, S.
Gardner, G. C.
Manfra, M. J.
Vool, U.
Bartlett, S. D.
Yacoby, A.
author_facet Bøttcher, C. G. L.
Harvey, S. P.
Fallahi, S.
Gardner, G. C.
Manfra, M. J.
Vool, U.
Bartlett, S. D.
Yacoby, A.
author_sort Bøttcher, C. G. L.
collection PubMed
description Coupling qubits to a superconducting resonator provides a mechanism to enable long-distance entangling operations in a quantum computer based on spins in semiconducting materials. Here, we demonstrate a controllable spin-photon coupling based on a longitudinal interaction between a spin qubit and a resonator. We show that coupling a singlet-triplet qubit to a high-impedance superconducting resonator can produce the desired longitudinal coupling when the qubit is driven near the resonator’s frequency. We measure the energy splitting of the qubit as a function of the drive amplitude and frequency of a microwave signal applied near the resonator antinode, revealing pronounced effects close to the resonator frequency due to longitudinal coupling. By tuning the amplitude of the drive, we reach a regime with longitudinal coupling exceeding 1 MHz. This mechanism for qubit-resonator coupling represents a stepping stone towards producing high-fidelity two-qubit gates mediated by a superconducting resonator.
format Online
Article
Text
id pubmed-9378792
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-93787922022-08-17 Parametric longitudinal coupling between a high-impedance superconducting resonator and a semiconductor quantum dot singlet-triplet spin qubit Bøttcher, C. G. L. Harvey, S. P. Fallahi, S. Gardner, G. C. Manfra, M. J. Vool, U. Bartlett, S. D. Yacoby, A. Nat Commun Article Coupling qubits to a superconducting resonator provides a mechanism to enable long-distance entangling operations in a quantum computer based on spins in semiconducting materials. Here, we demonstrate a controllable spin-photon coupling based on a longitudinal interaction between a spin qubit and a resonator. We show that coupling a singlet-triplet qubit to a high-impedance superconducting resonator can produce the desired longitudinal coupling when the qubit is driven near the resonator’s frequency. We measure the energy splitting of the qubit as a function of the drive amplitude and frequency of a microwave signal applied near the resonator antinode, revealing pronounced effects close to the resonator frequency due to longitudinal coupling. By tuning the amplitude of the drive, we reach a regime with longitudinal coupling exceeding 1 MHz. This mechanism for qubit-resonator coupling represents a stepping stone towards producing high-fidelity two-qubit gates mediated by a superconducting resonator. Nature Publishing Group UK 2022-08-15 /pmc/articles/PMC9378792/ /pubmed/35970821 http://dx.doi.org/10.1038/s41467-022-32236-w Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Bøttcher, C. G. L.
Harvey, S. P.
Fallahi, S.
Gardner, G. C.
Manfra, M. J.
Vool, U.
Bartlett, S. D.
Yacoby, A.
Parametric longitudinal coupling between a high-impedance superconducting resonator and a semiconductor quantum dot singlet-triplet spin qubit
title Parametric longitudinal coupling between a high-impedance superconducting resonator and a semiconductor quantum dot singlet-triplet spin qubit
title_full Parametric longitudinal coupling between a high-impedance superconducting resonator and a semiconductor quantum dot singlet-triplet spin qubit
title_fullStr Parametric longitudinal coupling between a high-impedance superconducting resonator and a semiconductor quantum dot singlet-triplet spin qubit
title_full_unstemmed Parametric longitudinal coupling between a high-impedance superconducting resonator and a semiconductor quantum dot singlet-triplet spin qubit
title_short Parametric longitudinal coupling between a high-impedance superconducting resonator and a semiconductor quantum dot singlet-triplet spin qubit
title_sort parametric longitudinal coupling between a high-impedance superconducting resonator and a semiconductor quantum dot singlet-triplet spin qubit
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9378792/
https://www.ncbi.nlm.nih.gov/pubmed/35970821
http://dx.doi.org/10.1038/s41467-022-32236-w
work_keys_str_mv AT bøttchercgl parametriclongitudinalcouplingbetweenahighimpedancesuperconductingresonatorandasemiconductorquantumdotsinglettripletspinqubit
AT harveysp parametriclongitudinalcouplingbetweenahighimpedancesuperconductingresonatorandasemiconductorquantumdotsinglettripletspinqubit
AT fallahis parametriclongitudinalcouplingbetweenahighimpedancesuperconductingresonatorandasemiconductorquantumdotsinglettripletspinqubit
AT gardnergc parametriclongitudinalcouplingbetweenahighimpedancesuperconductingresonatorandasemiconductorquantumdotsinglettripletspinqubit
AT manframj parametriclongitudinalcouplingbetweenahighimpedancesuperconductingresonatorandasemiconductorquantumdotsinglettripletspinqubit
AT voolu parametriclongitudinalcouplingbetweenahighimpedancesuperconductingresonatorandasemiconductorquantumdotsinglettripletspinqubit
AT bartlettsd parametriclongitudinalcouplingbetweenahighimpedancesuperconductingresonatorandasemiconductorquantumdotsinglettripletspinqubit
AT yacobya parametriclongitudinalcouplingbetweenahighimpedancesuperconductingresonatorandasemiconductorquantumdotsinglettripletspinqubit