Cargando…

Changes in working memory performance and cortical activity during acute aerobic exercise in young adults

This study aimed to examine the concurrent performance of working memory and cortical activity during acute aerobic exercise in young adults. In a crossover study design, 27 young adults (mean age = 22.7 ± 3.4 years, 15 women) participated in two experimental conditions in a randomized order: (1) si...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Kefeng, Deng, Zhangyan, Qian, Jiali, Chen, Yanxia, Li, Shiyuan, Huang, Tao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9379142/
https://www.ncbi.nlm.nih.gov/pubmed/35983476
http://dx.doi.org/10.3389/fnbeh.2022.884490
Descripción
Sumario:This study aimed to examine the concurrent performance of working memory and cortical activity during acute aerobic exercise in young adults. In a crossover study design, 27 young adults (mean age = 22.7 ± 3.4 years, 15 women) participated in two experimental conditions in a randomized order: (1) sitting condition (without exercise) and (2) cycling condition (moderate-intensity exercise). Working memory was measured with a modified version of the n-back task. A functional near-infrared spectroscopy (fNIRS) was used to measure cortex activation. In the cycling condition, response time (RT) for the n-back task was significantly faster (p < 0.05). No differences in accuracy were observed between the sitting and cycling conditions. The fNIRS results showed that the oxygenated hemoglobin (oxy-Hb) concentrations in the bilateral frontopolar area (p < 0.05), dorsolateral prefrontal cortex (p < 0.05), and right premotor and supplementary cortex (p < 0.05) were decreased while cycling. The findings indicated that the concurrent performance of working memory was improved during acute aerobic exercise, whereas cortical activity was decreased in some brain regions.