Cargando…
Regulation of mitochondrial proteostasis by the proton gradient
Mitochondria adapt to different energetic demands reshaping their proteome. Mitochondrial proteases are emerging as key regulators of these adaptive processes. Here, we use a multiproteomic approach to demonstrate the regulation of the m‐AAA protease AFG3L2 by the mitochondrial proton gradient, coup...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9379554/ https://www.ncbi.nlm.nih.gov/pubmed/35912435 http://dx.doi.org/10.15252/embj.2021110476 |
_version_ | 1784768697602146304 |
---|---|
author | Patron, Maria Tarasenko, Daryna Nolte, Hendrik Kroczek, Lara Ghosh, Mausumi Ohba, Yohsuke Lasarzewski, Yvonne Ahmadi, Zeinab Alsadat Cabrera‐Orefice, Alfredo Eyiama, Akinori Kellermann, Tim Rugarli, Elena I Brandt, Ulrich Meinecke, Michael Langer, Thomas |
author_facet | Patron, Maria Tarasenko, Daryna Nolte, Hendrik Kroczek, Lara Ghosh, Mausumi Ohba, Yohsuke Lasarzewski, Yvonne Ahmadi, Zeinab Alsadat Cabrera‐Orefice, Alfredo Eyiama, Akinori Kellermann, Tim Rugarli, Elena I Brandt, Ulrich Meinecke, Michael Langer, Thomas |
author_sort | Patron, Maria |
collection | PubMed |
description | Mitochondria adapt to different energetic demands reshaping their proteome. Mitochondrial proteases are emerging as key regulators of these adaptive processes. Here, we use a multiproteomic approach to demonstrate the regulation of the m‐AAA protease AFG3L2 by the mitochondrial proton gradient, coupling mitochondrial protein turnover to the energetic status of mitochondria. We identify TMBIM5 (previously also known as GHITM or MICS1) as a Ca(2+)/H(+) exchanger in the mitochondrial inner membrane, which binds to and inhibits the m‐AAA protease. TMBIM5 ensures cell survival and respiration, allowing Ca(2+) efflux from mitochondria and limiting mitochondrial hyperpolarization. Persistent hyperpolarization, however, triggers degradation of TMBIM5 and activation of the m‐AAA protease. The m‐AAA protease broadly remodels the mitochondrial proteome and mediates the proteolytic breakdown of respiratory complex I to confine ROS production and oxidative damage in hyperpolarized mitochondria. TMBIM5 thus integrates mitochondrial Ca(2+) signaling and the energetic status of mitochondria with protein turnover rates to reshape the mitochondrial proteome and adjust the cellular metabolism. |
format | Online Article Text |
id | pubmed-9379554 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-93795542022-08-24 Regulation of mitochondrial proteostasis by the proton gradient Patron, Maria Tarasenko, Daryna Nolte, Hendrik Kroczek, Lara Ghosh, Mausumi Ohba, Yohsuke Lasarzewski, Yvonne Ahmadi, Zeinab Alsadat Cabrera‐Orefice, Alfredo Eyiama, Akinori Kellermann, Tim Rugarli, Elena I Brandt, Ulrich Meinecke, Michael Langer, Thomas EMBO J Articles Mitochondria adapt to different energetic demands reshaping their proteome. Mitochondrial proteases are emerging as key regulators of these adaptive processes. Here, we use a multiproteomic approach to demonstrate the regulation of the m‐AAA protease AFG3L2 by the mitochondrial proton gradient, coupling mitochondrial protein turnover to the energetic status of mitochondria. We identify TMBIM5 (previously also known as GHITM or MICS1) as a Ca(2+)/H(+) exchanger in the mitochondrial inner membrane, which binds to and inhibits the m‐AAA protease. TMBIM5 ensures cell survival and respiration, allowing Ca(2+) efflux from mitochondria and limiting mitochondrial hyperpolarization. Persistent hyperpolarization, however, triggers degradation of TMBIM5 and activation of the m‐AAA protease. The m‐AAA protease broadly remodels the mitochondrial proteome and mediates the proteolytic breakdown of respiratory complex I to confine ROS production and oxidative damage in hyperpolarized mitochondria. TMBIM5 thus integrates mitochondrial Ca(2+) signaling and the energetic status of mitochondria with protein turnover rates to reshape the mitochondrial proteome and adjust the cellular metabolism. John Wiley and Sons Inc. 2022-08-01 /pmc/articles/PMC9379554/ /pubmed/35912435 http://dx.doi.org/10.15252/embj.2021110476 Text en © 2022 The Authors. Published under the terms of the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Patron, Maria Tarasenko, Daryna Nolte, Hendrik Kroczek, Lara Ghosh, Mausumi Ohba, Yohsuke Lasarzewski, Yvonne Ahmadi, Zeinab Alsadat Cabrera‐Orefice, Alfredo Eyiama, Akinori Kellermann, Tim Rugarli, Elena I Brandt, Ulrich Meinecke, Michael Langer, Thomas Regulation of mitochondrial proteostasis by the proton gradient |
title | Regulation of mitochondrial proteostasis by the proton gradient |
title_full | Regulation of mitochondrial proteostasis by the proton gradient |
title_fullStr | Regulation of mitochondrial proteostasis by the proton gradient |
title_full_unstemmed | Regulation of mitochondrial proteostasis by the proton gradient |
title_short | Regulation of mitochondrial proteostasis by the proton gradient |
title_sort | regulation of mitochondrial proteostasis by the proton gradient |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9379554/ https://www.ncbi.nlm.nih.gov/pubmed/35912435 http://dx.doi.org/10.15252/embj.2021110476 |
work_keys_str_mv | AT patronmaria regulationofmitochondrialproteostasisbytheprotongradient AT tarasenkodaryna regulationofmitochondrialproteostasisbytheprotongradient AT noltehendrik regulationofmitochondrialproteostasisbytheprotongradient AT kroczeklara regulationofmitochondrialproteostasisbytheprotongradient AT ghoshmausumi regulationofmitochondrialproteostasisbytheprotongradient AT ohbayohsuke regulationofmitochondrialproteostasisbytheprotongradient AT lasarzewskiyvonne regulationofmitochondrialproteostasisbytheprotongradient AT ahmadizeinabalsadat regulationofmitochondrialproteostasisbytheprotongradient AT cabreraoreficealfredo regulationofmitochondrialproteostasisbytheprotongradient AT eyiamaakinori regulationofmitochondrialproteostasisbytheprotongradient AT kellermanntim regulationofmitochondrialproteostasisbytheprotongradient AT rugarlielenai regulationofmitochondrialproteostasisbytheprotongradient AT brandtulrich regulationofmitochondrialproteostasisbytheprotongradient AT meineckemichael regulationofmitochondrialproteostasisbytheprotongradient AT langerthomas regulationofmitochondrialproteostasisbytheprotongradient |