Cargando…

Regulation of mitochondrial proteostasis by the proton gradient

Mitochondria adapt to different energetic demands reshaping their proteome. Mitochondrial proteases are emerging as key regulators of these adaptive processes. Here, we use a multiproteomic approach to demonstrate the regulation of the m‐AAA protease AFG3L2 by the mitochondrial proton gradient, coup...

Descripción completa

Detalles Bibliográficos
Autores principales: Patron, Maria, Tarasenko, Daryna, Nolte, Hendrik, Kroczek, Lara, Ghosh, Mausumi, Ohba, Yohsuke, Lasarzewski, Yvonne, Ahmadi, Zeinab Alsadat, Cabrera‐Orefice, Alfredo, Eyiama, Akinori, Kellermann, Tim, Rugarli, Elena I, Brandt, Ulrich, Meinecke, Michael, Langer, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9379554/
https://www.ncbi.nlm.nih.gov/pubmed/35912435
http://dx.doi.org/10.15252/embj.2021110476
_version_ 1784768697602146304
author Patron, Maria
Tarasenko, Daryna
Nolte, Hendrik
Kroczek, Lara
Ghosh, Mausumi
Ohba, Yohsuke
Lasarzewski, Yvonne
Ahmadi, Zeinab Alsadat
Cabrera‐Orefice, Alfredo
Eyiama, Akinori
Kellermann, Tim
Rugarli, Elena I
Brandt, Ulrich
Meinecke, Michael
Langer, Thomas
author_facet Patron, Maria
Tarasenko, Daryna
Nolte, Hendrik
Kroczek, Lara
Ghosh, Mausumi
Ohba, Yohsuke
Lasarzewski, Yvonne
Ahmadi, Zeinab Alsadat
Cabrera‐Orefice, Alfredo
Eyiama, Akinori
Kellermann, Tim
Rugarli, Elena I
Brandt, Ulrich
Meinecke, Michael
Langer, Thomas
author_sort Patron, Maria
collection PubMed
description Mitochondria adapt to different energetic demands reshaping their proteome. Mitochondrial proteases are emerging as key regulators of these adaptive processes. Here, we use a multiproteomic approach to demonstrate the regulation of the m‐AAA protease AFG3L2 by the mitochondrial proton gradient, coupling mitochondrial protein turnover to the energetic status of mitochondria. We identify TMBIM5 (previously also known as GHITM or MICS1) as a Ca(2+)/H(+) exchanger in the mitochondrial inner membrane, which binds to and inhibits the m‐AAA protease. TMBIM5 ensures cell survival and respiration, allowing Ca(2+) efflux from mitochondria and limiting mitochondrial hyperpolarization. Persistent hyperpolarization, however, triggers degradation of TMBIM5 and activation of the m‐AAA protease. The m‐AAA protease broadly remodels the mitochondrial proteome and mediates the proteolytic breakdown of respiratory complex I to confine ROS production and oxidative damage in hyperpolarized mitochondria. TMBIM5 thus integrates mitochondrial Ca(2+) signaling and the energetic status of mitochondria with protein turnover rates to reshape the mitochondrial proteome and adjust the cellular metabolism.
format Online
Article
Text
id pubmed-9379554
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-93795542022-08-24 Regulation of mitochondrial proteostasis by the proton gradient Patron, Maria Tarasenko, Daryna Nolte, Hendrik Kroczek, Lara Ghosh, Mausumi Ohba, Yohsuke Lasarzewski, Yvonne Ahmadi, Zeinab Alsadat Cabrera‐Orefice, Alfredo Eyiama, Akinori Kellermann, Tim Rugarli, Elena I Brandt, Ulrich Meinecke, Michael Langer, Thomas EMBO J Articles Mitochondria adapt to different energetic demands reshaping their proteome. Mitochondrial proteases are emerging as key regulators of these adaptive processes. Here, we use a multiproteomic approach to demonstrate the regulation of the m‐AAA protease AFG3L2 by the mitochondrial proton gradient, coupling mitochondrial protein turnover to the energetic status of mitochondria. We identify TMBIM5 (previously also known as GHITM or MICS1) as a Ca(2+)/H(+) exchanger in the mitochondrial inner membrane, which binds to and inhibits the m‐AAA protease. TMBIM5 ensures cell survival and respiration, allowing Ca(2+) efflux from mitochondria and limiting mitochondrial hyperpolarization. Persistent hyperpolarization, however, triggers degradation of TMBIM5 and activation of the m‐AAA protease. The m‐AAA protease broadly remodels the mitochondrial proteome and mediates the proteolytic breakdown of respiratory complex I to confine ROS production and oxidative damage in hyperpolarized mitochondria. TMBIM5 thus integrates mitochondrial Ca(2+) signaling and the energetic status of mitochondria with protein turnover rates to reshape the mitochondrial proteome and adjust the cellular metabolism. John Wiley and Sons Inc. 2022-08-01 /pmc/articles/PMC9379554/ /pubmed/35912435 http://dx.doi.org/10.15252/embj.2021110476 Text en © 2022 The Authors. Published under the terms of the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Articles
Patron, Maria
Tarasenko, Daryna
Nolte, Hendrik
Kroczek, Lara
Ghosh, Mausumi
Ohba, Yohsuke
Lasarzewski, Yvonne
Ahmadi, Zeinab Alsadat
Cabrera‐Orefice, Alfredo
Eyiama, Akinori
Kellermann, Tim
Rugarli, Elena I
Brandt, Ulrich
Meinecke, Michael
Langer, Thomas
Regulation of mitochondrial proteostasis by the proton gradient
title Regulation of mitochondrial proteostasis by the proton gradient
title_full Regulation of mitochondrial proteostasis by the proton gradient
title_fullStr Regulation of mitochondrial proteostasis by the proton gradient
title_full_unstemmed Regulation of mitochondrial proteostasis by the proton gradient
title_short Regulation of mitochondrial proteostasis by the proton gradient
title_sort regulation of mitochondrial proteostasis by the proton gradient
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9379554/
https://www.ncbi.nlm.nih.gov/pubmed/35912435
http://dx.doi.org/10.15252/embj.2021110476
work_keys_str_mv AT patronmaria regulationofmitochondrialproteostasisbytheprotongradient
AT tarasenkodaryna regulationofmitochondrialproteostasisbytheprotongradient
AT noltehendrik regulationofmitochondrialproteostasisbytheprotongradient
AT kroczeklara regulationofmitochondrialproteostasisbytheprotongradient
AT ghoshmausumi regulationofmitochondrialproteostasisbytheprotongradient
AT ohbayohsuke regulationofmitochondrialproteostasisbytheprotongradient
AT lasarzewskiyvonne regulationofmitochondrialproteostasisbytheprotongradient
AT ahmadizeinabalsadat regulationofmitochondrialproteostasisbytheprotongradient
AT cabreraoreficealfredo regulationofmitochondrialproteostasisbytheprotongradient
AT eyiamaakinori regulationofmitochondrialproteostasisbytheprotongradient
AT kellermanntim regulationofmitochondrialproteostasisbytheprotongradient
AT rugarlielenai regulationofmitochondrialproteostasisbytheprotongradient
AT brandtulrich regulationofmitochondrialproteostasisbytheprotongradient
AT meineckemichael regulationofmitochondrialproteostasisbytheprotongradient
AT langerthomas regulationofmitochondrialproteostasisbytheprotongradient