Cargando…

M1 stage subdivisions based on (18)F-FDG PET-CT parameters to identify locoregional radiotherapy for metastatic nasopharyngeal carcinoma

PURPOSE: To establish a risk classification of de novo metastatic nasopharyngeal carcinoma (mNPC) patients based on (18)F-fluorodeoxyglucose positron emission tomography/computed tomography ((18)F-FDG PET-CT) radiomics parameters to identify suitable candidates for locoregional radiotherapy (LRRT)....

Descripción completa

Detalles Bibliográficos
Autores principales: Qiu, Hui-Zhi, Zhang, Xu, Liu, Sai-Lan, Sun, Xue-Song, Mo, Yi-Wen, Lin, Huan-Xin, Lu, Zi-Jian, Guo, Jia, Tang, Lin-Quan, Mai, Hai-Qiang, Liu, Li-Ting, Guo, Ling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9379565/
https://www.ncbi.nlm.nih.gov/pubmed/35983026
http://dx.doi.org/10.1177/17588359221118785
_version_ 1784768700385067008
author Qiu, Hui-Zhi
Zhang, Xu
Liu, Sai-Lan
Sun, Xue-Song
Mo, Yi-Wen
Lin, Huan-Xin
Lu, Zi-Jian
Guo, Jia
Tang, Lin-Quan
Mai, Hai-Qiang
Liu, Li-Ting
Guo, Ling
author_facet Qiu, Hui-Zhi
Zhang, Xu
Liu, Sai-Lan
Sun, Xue-Song
Mo, Yi-Wen
Lin, Huan-Xin
Lu, Zi-Jian
Guo, Jia
Tang, Lin-Quan
Mai, Hai-Qiang
Liu, Li-Ting
Guo, Ling
author_sort Qiu, Hui-Zhi
collection PubMed
description PURPOSE: To establish a risk classification of de novo metastatic nasopharyngeal carcinoma (mNPC) patients based on (18)F-fluorodeoxyglucose positron emission tomography/computed tomography ((18)F-FDG PET-CT) radiomics parameters to identify suitable candidates for locoregional radiotherapy (LRRT). METHODS: In all, 586 de novo mNPC patients who underwent (18)F-FDG PET-CT prior to palliative chemotherapy (PCT) were involved. A Cox regression model was performed to identify prognostic factors for overall survival (OS). Candidate PET-CT parameters were incorporated into the PET-CT parameter score (PPS). Recursive partitioning analysis (RPA) was applied to construct a risk stratification system. RESULTS: Multivariate Cox regression analyses revealed that total lesion glycolysis of locoregional lesions (LRL-TLG), the number of bone metastases (BMs), metabolic tumor volume of distant soft tissue metastases (DSTM-MTV), pretreatment Epstein–Barr virus DNA (EBV DNA), and liver involvement were independent prognosticators for OS. The number of BMs, LRL-TLG, and DSTM-MTV were incorporated as the PPS. Eligible patients were divided into three stages by the RPA-risk stratification model: M1a (low risk, PPS(low) + no liver involvement), M1b (intermediate risk, PPS(low) + liver involvement, PPS(high) + low EBV DNA), and M1c (high risk, PPS(high) + high EBV DNA). PCT followed by LRRT displayed favorable OS rates compared to PCT alone in M1a patients (p < 0.001). No significant survival difference was observed between PCT plus LRRT and PCT alone in M1b and M1c patients (p > 0.05). CONCLUSIONS: The PPS-based RPA stratification model could identify suitable candidates for LRRT. Patients with stage M1a disease could benefit from LRRT.
format Online
Article
Text
id pubmed-9379565
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-93795652022-08-17 M1 stage subdivisions based on (18)F-FDG PET-CT parameters to identify locoregional radiotherapy for metastatic nasopharyngeal carcinoma Qiu, Hui-Zhi Zhang, Xu Liu, Sai-Lan Sun, Xue-Song Mo, Yi-Wen Lin, Huan-Xin Lu, Zi-Jian Guo, Jia Tang, Lin-Quan Mai, Hai-Qiang Liu, Li-Ting Guo, Ling Ther Adv Med Oncol Original Research PURPOSE: To establish a risk classification of de novo metastatic nasopharyngeal carcinoma (mNPC) patients based on (18)F-fluorodeoxyglucose positron emission tomography/computed tomography ((18)F-FDG PET-CT) radiomics parameters to identify suitable candidates for locoregional radiotherapy (LRRT). METHODS: In all, 586 de novo mNPC patients who underwent (18)F-FDG PET-CT prior to palliative chemotherapy (PCT) were involved. A Cox regression model was performed to identify prognostic factors for overall survival (OS). Candidate PET-CT parameters were incorporated into the PET-CT parameter score (PPS). Recursive partitioning analysis (RPA) was applied to construct a risk stratification system. RESULTS: Multivariate Cox regression analyses revealed that total lesion glycolysis of locoregional lesions (LRL-TLG), the number of bone metastases (BMs), metabolic tumor volume of distant soft tissue metastases (DSTM-MTV), pretreatment Epstein–Barr virus DNA (EBV DNA), and liver involvement were independent prognosticators for OS. The number of BMs, LRL-TLG, and DSTM-MTV were incorporated as the PPS. Eligible patients were divided into three stages by the RPA-risk stratification model: M1a (low risk, PPS(low) + no liver involvement), M1b (intermediate risk, PPS(low) + liver involvement, PPS(high) + low EBV DNA), and M1c (high risk, PPS(high) + high EBV DNA). PCT followed by LRRT displayed favorable OS rates compared to PCT alone in M1a patients (p < 0.001). No significant survival difference was observed between PCT plus LRRT and PCT alone in M1b and M1c patients (p > 0.05). CONCLUSIONS: The PPS-based RPA stratification model could identify suitable candidates for LRRT. Patients with stage M1a disease could benefit from LRRT. SAGE Publications 2022-08-12 /pmc/articles/PMC9379565/ /pubmed/35983026 http://dx.doi.org/10.1177/17588359221118785 Text en © The Author(s), 2022 https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
spellingShingle Original Research
Qiu, Hui-Zhi
Zhang, Xu
Liu, Sai-Lan
Sun, Xue-Song
Mo, Yi-Wen
Lin, Huan-Xin
Lu, Zi-Jian
Guo, Jia
Tang, Lin-Quan
Mai, Hai-Qiang
Liu, Li-Ting
Guo, Ling
M1 stage subdivisions based on (18)F-FDG PET-CT parameters to identify locoregional radiotherapy for metastatic nasopharyngeal carcinoma
title M1 stage subdivisions based on (18)F-FDG PET-CT parameters to identify locoregional radiotherapy for metastatic nasopharyngeal carcinoma
title_full M1 stage subdivisions based on (18)F-FDG PET-CT parameters to identify locoregional radiotherapy for metastatic nasopharyngeal carcinoma
title_fullStr M1 stage subdivisions based on (18)F-FDG PET-CT parameters to identify locoregional radiotherapy for metastatic nasopharyngeal carcinoma
title_full_unstemmed M1 stage subdivisions based on (18)F-FDG PET-CT parameters to identify locoregional radiotherapy for metastatic nasopharyngeal carcinoma
title_short M1 stage subdivisions based on (18)F-FDG PET-CT parameters to identify locoregional radiotherapy for metastatic nasopharyngeal carcinoma
title_sort m1 stage subdivisions based on (18)f-fdg pet-ct parameters to identify locoregional radiotherapy for metastatic nasopharyngeal carcinoma
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9379565/
https://www.ncbi.nlm.nih.gov/pubmed/35983026
http://dx.doi.org/10.1177/17588359221118785
work_keys_str_mv AT qiuhuizhi m1stagesubdivisionsbasedon18ffdgpetctparameterstoidentifylocoregionalradiotherapyformetastaticnasopharyngealcarcinoma
AT zhangxu m1stagesubdivisionsbasedon18ffdgpetctparameterstoidentifylocoregionalradiotherapyformetastaticnasopharyngealcarcinoma
AT liusailan m1stagesubdivisionsbasedon18ffdgpetctparameterstoidentifylocoregionalradiotherapyformetastaticnasopharyngealcarcinoma
AT sunxuesong m1stagesubdivisionsbasedon18ffdgpetctparameterstoidentifylocoregionalradiotherapyformetastaticnasopharyngealcarcinoma
AT moyiwen m1stagesubdivisionsbasedon18ffdgpetctparameterstoidentifylocoregionalradiotherapyformetastaticnasopharyngealcarcinoma
AT linhuanxin m1stagesubdivisionsbasedon18ffdgpetctparameterstoidentifylocoregionalradiotherapyformetastaticnasopharyngealcarcinoma
AT luzijian m1stagesubdivisionsbasedon18ffdgpetctparameterstoidentifylocoregionalradiotherapyformetastaticnasopharyngealcarcinoma
AT guojia m1stagesubdivisionsbasedon18ffdgpetctparameterstoidentifylocoregionalradiotherapyformetastaticnasopharyngealcarcinoma
AT tanglinquan m1stagesubdivisionsbasedon18ffdgpetctparameterstoidentifylocoregionalradiotherapyformetastaticnasopharyngealcarcinoma
AT maihaiqiang m1stagesubdivisionsbasedon18ffdgpetctparameterstoidentifylocoregionalradiotherapyformetastaticnasopharyngealcarcinoma
AT liuliting m1stagesubdivisionsbasedon18ffdgpetctparameterstoidentifylocoregionalradiotherapyformetastaticnasopharyngealcarcinoma
AT guoling m1stagesubdivisionsbasedon18ffdgpetctparameterstoidentifylocoregionalradiotherapyformetastaticnasopharyngealcarcinoma