Cargando…
Detecting tandem repeat variants in coding regions using code-adVNTR
The human genome contains more than one million tandem repeats (TRs), DNA sequences containing multiple approximate copies of a motif repeated contiguously. TRs account for significant genetic variation, with 50 + diseases attributed to changes in motif number. A few diseases have been to be caused...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9379575/ https://www.ncbi.nlm.nih.gov/pubmed/35982790 http://dx.doi.org/10.1016/j.isci.2022.104785 |
Sumario: | The human genome contains more than one million tandem repeats (TRs), DNA sequences containing multiple approximate copies of a motif repeated contiguously. TRs account for significant genetic variation, with 50 + diseases attributed to changes in motif number. A few diseases have been to be caused by small indels in variable number tandem repeats (VNTRs) including poly-cystic kidney disease type 1 (MCKD1) and monogenic type 1 diabetes. However, small indels in VNTRs are largely unexplored mainly due to the long and complex structure of VNTRs with multiple motifs. We developed a method, code-adVNTR, that utilizes multi-motif hidden Markov models to detect both, motif count variation and small indels, within VNTRs. In simulated data, code-adVNTR outperformed GATK-HaplotypeCaller in calling small indels within large VNTRs. We used code-adVNTR to characterize coding VNTRs in the 1000 genomes data identifying many population-specific variants, and to reliably call MUC1 mutations for MCKD1. |
---|