Cargando…

Satellite-Based Monitoring of the Algal Communities of Aras Dam Reservoir: Meteorological Dependence Analysis and the Footprint of COVID-19 Pandemic Lockdown on the Eutrophication Status

Aras Dam Lake is a strategic aquatic ecosystem in Iran and there are reports of toxic phytoplankton blooms in this reservoir. This study was performed to determine the effect of meteorological variables on the formation and expansion of toxic phytoplankton communities in Aras dam reservoir. The data...

Descripción completa

Detalles Bibliográficos
Autores principales: Aghashariatmadari, Zahra, Golmohammadian, Hadis, Shariatmadari, Zeinab, Mohebbi, Fereidun, Bazrafshan, Javad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9379891/
https://www.ncbi.nlm.nih.gov/pubmed/35992580
http://dx.doi.org/10.1007/s41742-022-00447-0
Descripción
Sumario:Aras Dam Lake is a strategic aquatic ecosystem in Iran and there are reports of toxic phytoplankton blooms in this reservoir. This study was performed to determine the effect of meteorological variables on the formation and expansion of toxic phytoplankton communities in Aras dam reservoir. The data of this project have been obtained using field studies and satellite data (MODIS and Sentinel-2). Sampling to determine the composition of phytoplankton communities in the area was carried out seasonally in two time periods from 2003 to 2014, and environmental assessments were also performed based on meteorological and satellite data over an 18-year period (2003–2020). The Chlorophyll-a content was obtained from MODIS and correlated with meteorological data. The statistical analysis showed that the highest coefficient of determination is related to the correlation of chlorophyll-a and Evaporation (R(2) = 0.86). Also, the relative root mean square error is equal to 18%, 18.1% and 21.2% for the chlorophyll-a -SST, chlorophyll-a -wind and chlorophyll-a -Evaporation relations, respectively. Moreover, in a supplementary study, correlation between the chlorophyll-a content with selected meteorological variables including evaporation, wind speed and water surface temperature were investigated seasonally. The results showed that the trend of changes in chlorophyll-a content with three considered variables are parabolic functions and chlorophyll-a -Evp (R(2) = 0.86, MAPE = 15.2%) model indicates better performance. The results also showed that the eutrophication rate of the reservoir during lockdown period increased in comparison with the same time at pre-pandemic period, which can be related to increase of incoming waste loads in this reservoir. GRAPHICAL ABSTRACT: [Image: see text]