Cargando…
Skeletal progenitors preserve proliferation and self-renewal upon inhibition of mitochondrial respiration by rerouting the TCA cycle
A functional electron transport chain (ETC) is crucial for supporting bioenergetics and biosynthesis. Accordingly, ETC inhibition decreases proliferation in cancer cells but does not seem to impair stem cell proliferation. However, it remains unclear how stem cells metabolically adapt. In this study...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9380255/ https://www.ncbi.nlm.nih.gov/pubmed/35905715 http://dx.doi.org/10.1016/j.celrep.2022.111105 |
_version_ | 1784768846420246528 |
---|---|
author | Tournaire, Guillaume Loopmans, Shauni Stegen, Steve Rinaldi, Gianmarco Eelen, Guy Torrekens, Sophie Moermans, Karen Carmeliet, Peter Ghesquière, Bart Thienpont, Bernard Fendt, Sarah-Maria van Gastel, Nick Carmeliet, Geert |
author_facet | Tournaire, Guillaume Loopmans, Shauni Stegen, Steve Rinaldi, Gianmarco Eelen, Guy Torrekens, Sophie Moermans, Karen Carmeliet, Peter Ghesquière, Bart Thienpont, Bernard Fendt, Sarah-Maria van Gastel, Nick Carmeliet, Geert |
author_sort | Tournaire, Guillaume |
collection | PubMed |
description | A functional electron transport chain (ETC) is crucial for supporting bioenergetics and biosynthesis. Accordingly, ETC inhibition decreases proliferation in cancer cells but does not seem to impair stem cell proliferation. However, it remains unclear how stem cells metabolically adapt. In this study, we show that pharmacological inhibition of complex III of the ETC in skeletal stem and progenitor cells induces glycolysis side pathways and reroutes the tricarboxylic acid (TCA) cycle to regenerate NAD(+) and preserve cell proliferation. These metabolic changes also culminate in increased succinate and 2-hydroxyglutarate levels that inhibit Ten-eleven translocation (TET) DNA demethylase activity, thereby preserving self-renewal and multilineage potential. Mechanistically, mitochondrial malate dehydrogenase and reverse succinate dehydrogenase activity proved to be essential for the metabolic rewiring in response to ETC inhibition. Together, these data show that the metabolic plasticity of skeletal stem and progenitor cells allows them to bypass ETC blockade and preserve their self-renewal. |
format | Online Article Text |
id | pubmed-9380255 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-93802552022-08-17 Skeletal progenitors preserve proliferation and self-renewal upon inhibition of mitochondrial respiration by rerouting the TCA cycle Tournaire, Guillaume Loopmans, Shauni Stegen, Steve Rinaldi, Gianmarco Eelen, Guy Torrekens, Sophie Moermans, Karen Carmeliet, Peter Ghesquière, Bart Thienpont, Bernard Fendt, Sarah-Maria van Gastel, Nick Carmeliet, Geert Cell Rep Article A functional electron transport chain (ETC) is crucial for supporting bioenergetics and biosynthesis. Accordingly, ETC inhibition decreases proliferation in cancer cells but does not seem to impair stem cell proliferation. However, it remains unclear how stem cells metabolically adapt. In this study, we show that pharmacological inhibition of complex III of the ETC in skeletal stem and progenitor cells induces glycolysis side pathways and reroutes the tricarboxylic acid (TCA) cycle to regenerate NAD(+) and preserve cell proliferation. These metabolic changes also culminate in increased succinate and 2-hydroxyglutarate levels that inhibit Ten-eleven translocation (TET) DNA demethylase activity, thereby preserving self-renewal and multilineage potential. Mechanistically, mitochondrial malate dehydrogenase and reverse succinate dehydrogenase activity proved to be essential for the metabolic rewiring in response to ETC inhibition. Together, these data show that the metabolic plasticity of skeletal stem and progenitor cells allows them to bypass ETC blockade and preserve their self-renewal. Cell Press 2022-07-28 /pmc/articles/PMC9380255/ /pubmed/35905715 http://dx.doi.org/10.1016/j.celrep.2022.111105 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Tournaire, Guillaume Loopmans, Shauni Stegen, Steve Rinaldi, Gianmarco Eelen, Guy Torrekens, Sophie Moermans, Karen Carmeliet, Peter Ghesquière, Bart Thienpont, Bernard Fendt, Sarah-Maria van Gastel, Nick Carmeliet, Geert Skeletal progenitors preserve proliferation and self-renewal upon inhibition of mitochondrial respiration by rerouting the TCA cycle |
title | Skeletal progenitors preserve proliferation and self-renewal upon inhibition of mitochondrial respiration by rerouting the TCA cycle |
title_full | Skeletal progenitors preserve proliferation and self-renewal upon inhibition of mitochondrial respiration by rerouting the TCA cycle |
title_fullStr | Skeletal progenitors preserve proliferation and self-renewal upon inhibition of mitochondrial respiration by rerouting the TCA cycle |
title_full_unstemmed | Skeletal progenitors preserve proliferation and self-renewal upon inhibition of mitochondrial respiration by rerouting the TCA cycle |
title_short | Skeletal progenitors preserve proliferation and self-renewal upon inhibition of mitochondrial respiration by rerouting the TCA cycle |
title_sort | skeletal progenitors preserve proliferation and self-renewal upon inhibition of mitochondrial respiration by rerouting the tca cycle |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9380255/ https://www.ncbi.nlm.nih.gov/pubmed/35905715 http://dx.doi.org/10.1016/j.celrep.2022.111105 |
work_keys_str_mv | AT tournaireguillaume skeletalprogenitorspreserveproliferationandselfrenewaluponinhibitionofmitochondrialrespirationbyreroutingthetcacycle AT loopmansshauni skeletalprogenitorspreserveproliferationandselfrenewaluponinhibitionofmitochondrialrespirationbyreroutingthetcacycle AT stegensteve skeletalprogenitorspreserveproliferationandselfrenewaluponinhibitionofmitochondrialrespirationbyreroutingthetcacycle AT rinaldigianmarco skeletalprogenitorspreserveproliferationandselfrenewaluponinhibitionofmitochondrialrespirationbyreroutingthetcacycle AT eelenguy skeletalprogenitorspreserveproliferationandselfrenewaluponinhibitionofmitochondrialrespirationbyreroutingthetcacycle AT torrekenssophie skeletalprogenitorspreserveproliferationandselfrenewaluponinhibitionofmitochondrialrespirationbyreroutingthetcacycle AT moermanskaren skeletalprogenitorspreserveproliferationandselfrenewaluponinhibitionofmitochondrialrespirationbyreroutingthetcacycle AT carmelietpeter skeletalprogenitorspreserveproliferationandselfrenewaluponinhibitionofmitochondrialrespirationbyreroutingthetcacycle AT ghesquierebart skeletalprogenitorspreserveproliferationandselfrenewaluponinhibitionofmitochondrialrespirationbyreroutingthetcacycle AT thienpontbernard skeletalprogenitorspreserveproliferationandselfrenewaluponinhibitionofmitochondrialrespirationbyreroutingthetcacycle AT fendtsarahmaria skeletalprogenitorspreserveproliferationandselfrenewaluponinhibitionofmitochondrialrespirationbyreroutingthetcacycle AT vangastelnick skeletalprogenitorspreserveproliferationandselfrenewaluponinhibitionofmitochondrialrespirationbyreroutingthetcacycle AT carmelietgeert skeletalprogenitorspreserveproliferationandselfrenewaluponinhibitionofmitochondrialrespirationbyreroutingthetcacycle |