Cargando…

Skeletal progenitors preserve proliferation and self-renewal upon inhibition of mitochondrial respiration by rerouting the TCA cycle

A functional electron transport chain (ETC) is crucial for supporting bioenergetics and biosynthesis. Accordingly, ETC inhibition decreases proliferation in cancer cells but does not seem to impair stem cell proliferation. However, it remains unclear how stem cells metabolically adapt. In this study...

Descripción completa

Detalles Bibliográficos
Autores principales: Tournaire, Guillaume, Loopmans, Shauni, Stegen, Steve, Rinaldi, Gianmarco, Eelen, Guy, Torrekens, Sophie, Moermans, Karen, Carmeliet, Peter, Ghesquière, Bart, Thienpont, Bernard, Fendt, Sarah-Maria, van Gastel, Nick, Carmeliet, Geert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9380255/
https://www.ncbi.nlm.nih.gov/pubmed/35905715
http://dx.doi.org/10.1016/j.celrep.2022.111105
_version_ 1784768846420246528
author Tournaire, Guillaume
Loopmans, Shauni
Stegen, Steve
Rinaldi, Gianmarco
Eelen, Guy
Torrekens, Sophie
Moermans, Karen
Carmeliet, Peter
Ghesquière, Bart
Thienpont, Bernard
Fendt, Sarah-Maria
van Gastel, Nick
Carmeliet, Geert
author_facet Tournaire, Guillaume
Loopmans, Shauni
Stegen, Steve
Rinaldi, Gianmarco
Eelen, Guy
Torrekens, Sophie
Moermans, Karen
Carmeliet, Peter
Ghesquière, Bart
Thienpont, Bernard
Fendt, Sarah-Maria
van Gastel, Nick
Carmeliet, Geert
author_sort Tournaire, Guillaume
collection PubMed
description A functional electron transport chain (ETC) is crucial for supporting bioenergetics and biosynthesis. Accordingly, ETC inhibition decreases proliferation in cancer cells but does not seem to impair stem cell proliferation. However, it remains unclear how stem cells metabolically adapt. In this study, we show that pharmacological inhibition of complex III of the ETC in skeletal stem and progenitor cells induces glycolysis side pathways and reroutes the tricarboxylic acid (TCA) cycle to regenerate NAD(+) and preserve cell proliferation. These metabolic changes also culminate in increased succinate and 2-hydroxyglutarate levels that inhibit Ten-eleven translocation (TET) DNA demethylase activity, thereby preserving self-renewal and multilineage potential. Mechanistically, mitochondrial malate dehydrogenase and reverse succinate dehydrogenase activity proved to be essential for the metabolic rewiring in response to ETC inhibition. Together, these data show that the metabolic plasticity of skeletal stem and progenitor cells allows them to bypass ETC blockade and preserve their self-renewal.
format Online
Article
Text
id pubmed-9380255
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-93802552022-08-17 Skeletal progenitors preserve proliferation and self-renewal upon inhibition of mitochondrial respiration by rerouting the TCA cycle Tournaire, Guillaume Loopmans, Shauni Stegen, Steve Rinaldi, Gianmarco Eelen, Guy Torrekens, Sophie Moermans, Karen Carmeliet, Peter Ghesquière, Bart Thienpont, Bernard Fendt, Sarah-Maria van Gastel, Nick Carmeliet, Geert Cell Rep Article A functional electron transport chain (ETC) is crucial for supporting bioenergetics and biosynthesis. Accordingly, ETC inhibition decreases proliferation in cancer cells but does not seem to impair stem cell proliferation. However, it remains unclear how stem cells metabolically adapt. In this study, we show that pharmacological inhibition of complex III of the ETC in skeletal stem and progenitor cells induces glycolysis side pathways and reroutes the tricarboxylic acid (TCA) cycle to regenerate NAD(+) and preserve cell proliferation. These metabolic changes also culminate in increased succinate and 2-hydroxyglutarate levels that inhibit Ten-eleven translocation (TET) DNA demethylase activity, thereby preserving self-renewal and multilineage potential. Mechanistically, mitochondrial malate dehydrogenase and reverse succinate dehydrogenase activity proved to be essential for the metabolic rewiring in response to ETC inhibition. Together, these data show that the metabolic plasticity of skeletal stem and progenitor cells allows them to bypass ETC blockade and preserve their self-renewal. Cell Press 2022-07-28 /pmc/articles/PMC9380255/ /pubmed/35905715 http://dx.doi.org/10.1016/j.celrep.2022.111105 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Tournaire, Guillaume
Loopmans, Shauni
Stegen, Steve
Rinaldi, Gianmarco
Eelen, Guy
Torrekens, Sophie
Moermans, Karen
Carmeliet, Peter
Ghesquière, Bart
Thienpont, Bernard
Fendt, Sarah-Maria
van Gastel, Nick
Carmeliet, Geert
Skeletal progenitors preserve proliferation and self-renewal upon inhibition of mitochondrial respiration by rerouting the TCA cycle
title Skeletal progenitors preserve proliferation and self-renewal upon inhibition of mitochondrial respiration by rerouting the TCA cycle
title_full Skeletal progenitors preserve proliferation and self-renewal upon inhibition of mitochondrial respiration by rerouting the TCA cycle
title_fullStr Skeletal progenitors preserve proliferation and self-renewal upon inhibition of mitochondrial respiration by rerouting the TCA cycle
title_full_unstemmed Skeletal progenitors preserve proliferation and self-renewal upon inhibition of mitochondrial respiration by rerouting the TCA cycle
title_short Skeletal progenitors preserve proliferation and self-renewal upon inhibition of mitochondrial respiration by rerouting the TCA cycle
title_sort skeletal progenitors preserve proliferation and self-renewal upon inhibition of mitochondrial respiration by rerouting the tca cycle
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9380255/
https://www.ncbi.nlm.nih.gov/pubmed/35905715
http://dx.doi.org/10.1016/j.celrep.2022.111105
work_keys_str_mv AT tournaireguillaume skeletalprogenitorspreserveproliferationandselfrenewaluponinhibitionofmitochondrialrespirationbyreroutingthetcacycle
AT loopmansshauni skeletalprogenitorspreserveproliferationandselfrenewaluponinhibitionofmitochondrialrespirationbyreroutingthetcacycle
AT stegensteve skeletalprogenitorspreserveproliferationandselfrenewaluponinhibitionofmitochondrialrespirationbyreroutingthetcacycle
AT rinaldigianmarco skeletalprogenitorspreserveproliferationandselfrenewaluponinhibitionofmitochondrialrespirationbyreroutingthetcacycle
AT eelenguy skeletalprogenitorspreserveproliferationandselfrenewaluponinhibitionofmitochondrialrespirationbyreroutingthetcacycle
AT torrekenssophie skeletalprogenitorspreserveproliferationandselfrenewaluponinhibitionofmitochondrialrespirationbyreroutingthetcacycle
AT moermanskaren skeletalprogenitorspreserveproliferationandselfrenewaluponinhibitionofmitochondrialrespirationbyreroutingthetcacycle
AT carmelietpeter skeletalprogenitorspreserveproliferationandselfrenewaluponinhibitionofmitochondrialrespirationbyreroutingthetcacycle
AT ghesquierebart skeletalprogenitorspreserveproliferationandselfrenewaluponinhibitionofmitochondrialrespirationbyreroutingthetcacycle
AT thienpontbernard skeletalprogenitorspreserveproliferationandselfrenewaluponinhibitionofmitochondrialrespirationbyreroutingthetcacycle
AT fendtsarahmaria skeletalprogenitorspreserveproliferationandselfrenewaluponinhibitionofmitochondrialrespirationbyreroutingthetcacycle
AT vangastelnick skeletalprogenitorspreserveproliferationandselfrenewaluponinhibitionofmitochondrialrespirationbyreroutingthetcacycle
AT carmelietgeert skeletalprogenitorspreserveproliferationandselfrenewaluponinhibitionofmitochondrialrespirationbyreroutingthetcacycle