Cargando…

Usage and cost-effectiveness of elective oocyte freezing: a retrospective observational study

BACKGROUND: The previous model-based cost-effectiveness analyses regarding elective oocyte cryopreservation remained debatable, while the usage rate may influence the cost per live birth. The aim of this study is to disclose the usage and cost-effectiveness of the planned cryopreserved oocytes after...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Ih-Jane, Wu, Ming-Yih, Chao, Kuang-Han, Wei, Shin-Yi, Tsai, Yi-Yi, Huang, Ting-Chi, Chen, Mei-Jou, Chen, Shee-Uan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9380307/
https://www.ncbi.nlm.nih.gov/pubmed/35974356
http://dx.doi.org/10.1186/s12958-022-00996-1
Descripción
Sumario:BACKGROUND: The previous model-based cost-effectiveness analyses regarding elective oocyte cryopreservation remained debatable, while the usage rate may influence the cost per live birth. The aim of this study is to disclose the usage and cost-effectiveness of the planned cryopreserved oocytes after oocyte thawing in real-world situations. METHODS: This was a retrospective single-center observational study. Women who electively cryopreserved oocytes and returned to thaw the oocytes were categorized as thawed group. The oocytes were fertilized at our center and the sperm samples for each individual was retrieved from their respective husbands. Clinical outcomes were traced and the cumulative live birth rate per thawed case was calculated. The costs from oocyte freezing cycles to oocyte thawing, and embryo transfer cycles were accordingly estimated. The cumulative cost per live birth was defined by the cumulative cost divided by the live births per thawed case. RESULTS: We recruited 645 women with 840 oocyte retrieval cycles for elective oocyte freezing from November 2002 to December 2020. The overall usage rate was 8.4% (54/645). After the storage duration exceeded ten years, the probabilities of thawing oocytes were 10.6%, 26.6%, and 12.7% from women who cryopreserved their oocytes at the age ≤ 35 years, 36–39 years, and ≥ 40 years, respectively (P = 0.304). Among women who thawed their oocytes, 31.5% (17/54) of women achieved at least one live birth. For the age groups of ≤ 35 years, 36–39 years, and ≥ 40 years, the cumulative live birth rates per thawed case were 63.6%, 42.3%, and 17.6%, respectively (P = 0.045), and the cumulative costs for one live birth were $11,704, $17,189, and $35,642, respectively (P < 0.001). CONCLUSIONS: The overall usage rate was 8.4% in our cohort. The cumulative live birth rate was greatest in the youngest group and the cumulative cost per live birth was highest in the oldest group, which was threefold greater than that in the group aged ≤ 35 years. The findings added to the limited evidence of the usage rate in real-world situations, which could hopefully aid future analysis and decision-making in public health policy and for women willing to preserve fertility. TRIAL REGISTRATION: None. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12958-022-00996-1.