Cargando…

BindVAE: Dirichlet variational autoencoders for de novo motif discovery from accessible chromatin

We present a novel unsupervised deep learning approach called BindVAE, based on Dirichlet variational autoencoders, for jointly decoding multiple TF binding signals from open chromatin regions. BindVAE can disentangle an input DNA sequence into distinct latent factors that encode cell-type specific...

Descripción completa

Detalles Bibliográficos
Autores principales: Kshirsagar, Meghana, Yuan, Han, Ferres, Juan Lavista, Leslie, Christina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9380350/
https://www.ncbi.nlm.nih.gov/pubmed/35971180
http://dx.doi.org/10.1186/s13059-022-02723-w
_version_ 1784768868356456448
author Kshirsagar, Meghana
Yuan, Han
Ferres, Juan Lavista
Leslie, Christina
author_facet Kshirsagar, Meghana
Yuan, Han
Ferres, Juan Lavista
Leslie, Christina
author_sort Kshirsagar, Meghana
collection PubMed
description We present a novel unsupervised deep learning approach called BindVAE, based on Dirichlet variational autoencoders, for jointly decoding multiple TF binding signals from open chromatin regions. BindVAE can disentangle an input DNA sequence into distinct latent factors that encode cell-type specific in vivo binding signals for individual TFs, composite patterns for TFs involved in cooperative binding, and genomic context surrounding the binding sites. On the task of retrieving the motifs of expressed TFs in a given cell type, BindVAE is competitive with existing motif discovery approaches. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1186/s13059-022-02723-w).
format Online
Article
Text
id pubmed-9380350
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-93803502022-08-17 BindVAE: Dirichlet variational autoencoders for de novo motif discovery from accessible chromatin Kshirsagar, Meghana Yuan, Han Ferres, Juan Lavista Leslie, Christina Genome Biol Method We present a novel unsupervised deep learning approach called BindVAE, based on Dirichlet variational autoencoders, for jointly decoding multiple TF binding signals from open chromatin regions. BindVAE can disentangle an input DNA sequence into distinct latent factors that encode cell-type specific in vivo binding signals for individual TFs, composite patterns for TFs involved in cooperative binding, and genomic context surrounding the binding sites. On the task of retrieving the motifs of expressed TFs in a given cell type, BindVAE is competitive with existing motif discovery approaches. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1186/s13059-022-02723-w). BioMed Central 2022-08-15 /pmc/articles/PMC9380350/ /pubmed/35971180 http://dx.doi.org/10.1186/s13059-022-02723-w Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Method
Kshirsagar, Meghana
Yuan, Han
Ferres, Juan Lavista
Leslie, Christina
BindVAE: Dirichlet variational autoencoders for de novo motif discovery from accessible chromatin
title BindVAE: Dirichlet variational autoencoders for de novo motif discovery from accessible chromatin
title_full BindVAE: Dirichlet variational autoencoders for de novo motif discovery from accessible chromatin
title_fullStr BindVAE: Dirichlet variational autoencoders for de novo motif discovery from accessible chromatin
title_full_unstemmed BindVAE: Dirichlet variational autoencoders for de novo motif discovery from accessible chromatin
title_short BindVAE: Dirichlet variational autoencoders for de novo motif discovery from accessible chromatin
title_sort bindvae: dirichlet variational autoencoders for de novo motif discovery from accessible chromatin
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9380350/
https://www.ncbi.nlm.nih.gov/pubmed/35971180
http://dx.doi.org/10.1186/s13059-022-02723-w
work_keys_str_mv AT kshirsagarmeghana bindvaedirichletvariationalautoencodersfordenovomotifdiscoveryfromaccessiblechromatin
AT yuanhan bindvaedirichletvariationalautoencodersfordenovomotifdiscoveryfromaccessiblechromatin
AT ferresjuanlavista bindvaedirichletvariationalautoencodersfordenovomotifdiscoveryfromaccessiblechromatin
AT lesliechristina bindvaedirichletvariationalautoencodersfordenovomotifdiscoveryfromaccessiblechromatin