Cargando…
BindVAE: Dirichlet variational autoencoders for de novo motif discovery from accessible chromatin
We present a novel unsupervised deep learning approach called BindVAE, based on Dirichlet variational autoencoders, for jointly decoding multiple TF binding signals from open chromatin regions. BindVAE can disentangle an input DNA sequence into distinct latent factors that encode cell-type specific...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9380350/ https://www.ncbi.nlm.nih.gov/pubmed/35971180 http://dx.doi.org/10.1186/s13059-022-02723-w |
_version_ | 1784768868356456448 |
---|---|
author | Kshirsagar, Meghana Yuan, Han Ferres, Juan Lavista Leslie, Christina |
author_facet | Kshirsagar, Meghana Yuan, Han Ferres, Juan Lavista Leslie, Christina |
author_sort | Kshirsagar, Meghana |
collection | PubMed |
description | We present a novel unsupervised deep learning approach called BindVAE, based on Dirichlet variational autoencoders, for jointly decoding multiple TF binding signals from open chromatin regions. BindVAE can disentangle an input DNA sequence into distinct latent factors that encode cell-type specific in vivo binding signals for individual TFs, composite patterns for TFs involved in cooperative binding, and genomic context surrounding the binding sites. On the task of retrieving the motifs of expressed TFs in a given cell type, BindVAE is competitive with existing motif discovery approaches. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1186/s13059-022-02723-w). |
format | Online Article Text |
id | pubmed-9380350 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-93803502022-08-17 BindVAE: Dirichlet variational autoencoders for de novo motif discovery from accessible chromatin Kshirsagar, Meghana Yuan, Han Ferres, Juan Lavista Leslie, Christina Genome Biol Method We present a novel unsupervised deep learning approach called BindVAE, based on Dirichlet variational autoencoders, for jointly decoding multiple TF binding signals from open chromatin regions. BindVAE can disentangle an input DNA sequence into distinct latent factors that encode cell-type specific in vivo binding signals for individual TFs, composite patterns for TFs involved in cooperative binding, and genomic context surrounding the binding sites. On the task of retrieving the motifs of expressed TFs in a given cell type, BindVAE is competitive with existing motif discovery approaches. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1186/s13059-022-02723-w). BioMed Central 2022-08-15 /pmc/articles/PMC9380350/ /pubmed/35971180 http://dx.doi.org/10.1186/s13059-022-02723-w Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Method Kshirsagar, Meghana Yuan, Han Ferres, Juan Lavista Leslie, Christina BindVAE: Dirichlet variational autoencoders for de novo motif discovery from accessible chromatin |
title | BindVAE: Dirichlet variational autoencoders for de novo motif discovery from accessible chromatin |
title_full | BindVAE: Dirichlet variational autoencoders for de novo motif discovery from accessible chromatin |
title_fullStr | BindVAE: Dirichlet variational autoencoders for de novo motif discovery from accessible chromatin |
title_full_unstemmed | BindVAE: Dirichlet variational autoencoders for de novo motif discovery from accessible chromatin |
title_short | BindVAE: Dirichlet variational autoencoders for de novo motif discovery from accessible chromatin |
title_sort | bindvae: dirichlet variational autoencoders for de novo motif discovery from accessible chromatin |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9380350/ https://www.ncbi.nlm.nih.gov/pubmed/35971180 http://dx.doi.org/10.1186/s13059-022-02723-w |
work_keys_str_mv | AT kshirsagarmeghana bindvaedirichletvariationalautoencodersfordenovomotifdiscoveryfromaccessiblechromatin AT yuanhan bindvaedirichletvariationalautoencodersfordenovomotifdiscoveryfromaccessiblechromatin AT ferresjuanlavista bindvaedirichletvariationalautoencodersfordenovomotifdiscoveryfromaccessiblechromatin AT lesliechristina bindvaedirichletvariationalautoencodersfordenovomotifdiscoveryfromaccessiblechromatin |