Cargando…
BindVAE: Dirichlet variational autoencoders for de novo motif discovery from accessible chromatin
We present a novel unsupervised deep learning approach called BindVAE, based on Dirichlet variational autoencoders, for jointly decoding multiple TF binding signals from open chromatin regions. BindVAE can disentangle an input DNA sequence into distinct latent factors that encode cell-type specific...
Autores principales: | Kshirsagar, Meghana, Yuan, Han, Ferres, Juan Lavista, Leslie, Christina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9380350/ https://www.ncbi.nlm.nih.gov/pubmed/35971180 http://dx.doi.org/10.1186/s13059-022-02723-w |
Ejemplares similares
-
Coupled VAE: Improved Accuracy and Robustness of a Variational Autoencoder
por: Cao, Shichen, et al.
Publicado: (2022) -
PepVAE: Variational Autoencoder Framework for Antimicrobial Peptide Generation and Activity Prediction
por: Dean, Scott N., et al.
Publicado: (2021) -
PriorVAE: encoding spatial priors with variational autoencoders for small-area estimation
por: Semenova, Elizaveta, et al.
Publicado: (2022) -
MEDEA: analysis of transcription factor binding motifs in accessible chromatin
por: Mariani, Luca, et al.
Publicado: (2020) -
VAE-Sim: A Novel Molecular Similarity Measure Based on a Variational Autoencoder
por: Samanta, Soumitra, et al.
Publicado: (2020)