Cargando…

A combined predictive model based on radiomics features and clinical factors for disease progression in early-stage non-small cell lung cancer treated with stereotactic ablative radiotherapy

PURPOSE: To accurately assess disease progression after Stereotactic Ablative Radiotherapy (SABR) of early-stage Non-Small Cell Lung Cancer (NSCLC), a combined predictive model based on pre-treatment CT radiomics features and clinical factors was established. METHODS: This study retrospectively anal...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Hong, Wang, Lin, Shao, Guoliang, Dong, Baiqiang, Wang, Fang, Wei, Yuguo, Li, Pu, Chen, Haiyan, Chen, Wujie, Zheng, Yao, He, Yiwei, Zhao, Yankun, Du, Xianghui, Sun, Xiaojiang, Wang, Zhun, Wang, Yuezhen, Zhou, Xia, Lai, Xiaojing, Feng, Wei, Shen, Liming, Qiu, Guoqing, Ji, Yongling, Chen, Jianxiang, Jiang, Youhua, Liu, Jinshi, Zeng, Jian, Wang, Changchun, Zhao, Qiang, Yang, Xun, Hu, Xiao, Ma, Honglian, Chen, Qixun, Chen, Ming, Jiang, Haitao, Xu, Yujin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9380646/
https://www.ncbi.nlm.nih.gov/pubmed/35982975
http://dx.doi.org/10.3389/fonc.2022.967360
_version_ 1784768917793669120
author Yang, Hong
Wang, Lin
Shao, Guoliang
Dong, Baiqiang
Wang, Fang
Wei, Yuguo
Li, Pu
Chen, Haiyan
Chen, Wujie
Zheng, Yao
He, Yiwei
Zhao, Yankun
Du, Xianghui
Sun, Xiaojiang
Wang, Zhun
Wang, Yuezhen
Zhou, Xia
Lai, Xiaojing
Feng, Wei
Shen, Liming
Qiu, Guoqing
Ji, Yongling
Chen, Jianxiang
Jiang, Youhua
Liu, Jinshi
Zeng, Jian
Wang, Changchun
Zhao, Qiang
Yang, Xun
Hu, Xiao
Ma, Honglian
Chen, Qixun
Chen, Ming
Jiang, Haitao
Xu, Yujin
author_facet Yang, Hong
Wang, Lin
Shao, Guoliang
Dong, Baiqiang
Wang, Fang
Wei, Yuguo
Li, Pu
Chen, Haiyan
Chen, Wujie
Zheng, Yao
He, Yiwei
Zhao, Yankun
Du, Xianghui
Sun, Xiaojiang
Wang, Zhun
Wang, Yuezhen
Zhou, Xia
Lai, Xiaojing
Feng, Wei
Shen, Liming
Qiu, Guoqing
Ji, Yongling
Chen, Jianxiang
Jiang, Youhua
Liu, Jinshi
Zeng, Jian
Wang, Changchun
Zhao, Qiang
Yang, Xun
Hu, Xiao
Ma, Honglian
Chen, Qixun
Chen, Ming
Jiang, Haitao
Xu, Yujin
author_sort Yang, Hong
collection PubMed
description PURPOSE: To accurately assess disease progression after Stereotactic Ablative Radiotherapy (SABR) of early-stage Non-Small Cell Lung Cancer (NSCLC), a combined predictive model based on pre-treatment CT radiomics features and clinical factors was established. METHODS: This study retrospectively analyzed the data of 96 patients with early-stage NSCLC treated with SABR. Clinical factors included general information (e.g. gender, age, KPS, Charlson score, lung function, smoking status), pre-treatment lesion status (e.g. diameter, location, pathological type, T stage), radiation parameters (biological effective dose, BED), the type of peritumoral radiation-induced lung injury (RILI). Independent risk factors were screened by logistic regression analysis. Radiomics features were extracted from pre-treatment CT. The minimum Redundancy Maximum Relevance (mRMR) and the Least Absolute Shrinkage and Selection Operator (LASSO) were adopted for the dimensionality reduction and feature selection. According to the weight coefficient of the features, the Radscore was calculated, and the radiomics model was constructed. Multiple logistic regression analysis was applied to establish the combined model based on radiomics features and clinical factors. Receiver Operating Characteristic (ROC) curve, DeLong test, Hosmer-Lemeshow test, and Decision Curve Analysis (DCA) were used to evaluate the model’s diagnostic efficiency and clinical practicability. RESULTS: With the median follow-up of 59.1 months, 29 patients developed progression and 67 remained good controlled within two years. Among the clinical factors, the type of peritumoral RILI was the only independent risk factor for progression (P< 0.05). Eleven features were selected from 1781 features to construct a radiomics model. For predicting disease progression after SABR, the Area Under the Curve (AUC) of training and validation cohorts in the radiomics model was 0.88 (95%CI 0.80-0.96) and 0.80 (95%CI 0.62-0.98), and AUC of training and validation cohorts in the combined model were 0.88 (95%CI 0.81-0.96) and 0.81 (95%CI 0.62-0.99). Both the radiomics and the combined models have good prediction efficiency in the training and validation cohorts. Still, DeLong test shows that there is no difference between them. CONCLUSIONS: Compared with the clinical model, the radiomics model and the combined model can better predict the disease progression of early-stage NSCLC after SABR, which might contribute to individualized follow-up plans and treatment strategies.
format Online
Article
Text
id pubmed-9380646
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-93806462022-08-17 A combined predictive model based on radiomics features and clinical factors for disease progression in early-stage non-small cell lung cancer treated with stereotactic ablative radiotherapy Yang, Hong Wang, Lin Shao, Guoliang Dong, Baiqiang Wang, Fang Wei, Yuguo Li, Pu Chen, Haiyan Chen, Wujie Zheng, Yao He, Yiwei Zhao, Yankun Du, Xianghui Sun, Xiaojiang Wang, Zhun Wang, Yuezhen Zhou, Xia Lai, Xiaojing Feng, Wei Shen, Liming Qiu, Guoqing Ji, Yongling Chen, Jianxiang Jiang, Youhua Liu, Jinshi Zeng, Jian Wang, Changchun Zhao, Qiang Yang, Xun Hu, Xiao Ma, Honglian Chen, Qixun Chen, Ming Jiang, Haitao Xu, Yujin Front Oncol Oncology PURPOSE: To accurately assess disease progression after Stereotactic Ablative Radiotherapy (SABR) of early-stage Non-Small Cell Lung Cancer (NSCLC), a combined predictive model based on pre-treatment CT radiomics features and clinical factors was established. METHODS: This study retrospectively analyzed the data of 96 patients with early-stage NSCLC treated with SABR. Clinical factors included general information (e.g. gender, age, KPS, Charlson score, lung function, smoking status), pre-treatment lesion status (e.g. diameter, location, pathological type, T stage), radiation parameters (biological effective dose, BED), the type of peritumoral radiation-induced lung injury (RILI). Independent risk factors were screened by logistic regression analysis. Radiomics features were extracted from pre-treatment CT. The minimum Redundancy Maximum Relevance (mRMR) and the Least Absolute Shrinkage and Selection Operator (LASSO) were adopted for the dimensionality reduction and feature selection. According to the weight coefficient of the features, the Radscore was calculated, and the radiomics model was constructed. Multiple logistic regression analysis was applied to establish the combined model based on radiomics features and clinical factors. Receiver Operating Characteristic (ROC) curve, DeLong test, Hosmer-Lemeshow test, and Decision Curve Analysis (DCA) were used to evaluate the model’s diagnostic efficiency and clinical practicability. RESULTS: With the median follow-up of 59.1 months, 29 patients developed progression and 67 remained good controlled within two years. Among the clinical factors, the type of peritumoral RILI was the only independent risk factor for progression (P< 0.05). Eleven features were selected from 1781 features to construct a radiomics model. For predicting disease progression after SABR, the Area Under the Curve (AUC) of training and validation cohorts in the radiomics model was 0.88 (95%CI 0.80-0.96) and 0.80 (95%CI 0.62-0.98), and AUC of training and validation cohorts in the combined model were 0.88 (95%CI 0.81-0.96) and 0.81 (95%CI 0.62-0.99). Both the radiomics and the combined models have good prediction efficiency in the training and validation cohorts. Still, DeLong test shows that there is no difference between them. CONCLUSIONS: Compared with the clinical model, the radiomics model and the combined model can better predict the disease progression of early-stage NSCLC after SABR, which might contribute to individualized follow-up plans and treatment strategies. Frontiers Media S.A. 2022-08-02 /pmc/articles/PMC9380646/ /pubmed/35982975 http://dx.doi.org/10.3389/fonc.2022.967360 Text en Copyright © 2022 Yang, Wang, Shao, Dong, Wang, Wei, Li, Chen, Chen, Zheng, He, Zhao, Du, Sun, Wang, Wang, Zhou, Lai, Feng, Shen, Qiu, Ji, Chen, Jiang, Liu, Zeng, Wang, Zhao, Yang, Hu, Ma, Chen, Chen, Jiang and Xu https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Oncology
Yang, Hong
Wang, Lin
Shao, Guoliang
Dong, Baiqiang
Wang, Fang
Wei, Yuguo
Li, Pu
Chen, Haiyan
Chen, Wujie
Zheng, Yao
He, Yiwei
Zhao, Yankun
Du, Xianghui
Sun, Xiaojiang
Wang, Zhun
Wang, Yuezhen
Zhou, Xia
Lai, Xiaojing
Feng, Wei
Shen, Liming
Qiu, Guoqing
Ji, Yongling
Chen, Jianxiang
Jiang, Youhua
Liu, Jinshi
Zeng, Jian
Wang, Changchun
Zhao, Qiang
Yang, Xun
Hu, Xiao
Ma, Honglian
Chen, Qixun
Chen, Ming
Jiang, Haitao
Xu, Yujin
A combined predictive model based on radiomics features and clinical factors for disease progression in early-stage non-small cell lung cancer treated with stereotactic ablative radiotherapy
title A combined predictive model based on radiomics features and clinical factors for disease progression in early-stage non-small cell lung cancer treated with stereotactic ablative radiotherapy
title_full A combined predictive model based on radiomics features and clinical factors for disease progression in early-stage non-small cell lung cancer treated with stereotactic ablative radiotherapy
title_fullStr A combined predictive model based on radiomics features and clinical factors for disease progression in early-stage non-small cell lung cancer treated with stereotactic ablative radiotherapy
title_full_unstemmed A combined predictive model based on radiomics features and clinical factors for disease progression in early-stage non-small cell lung cancer treated with stereotactic ablative radiotherapy
title_short A combined predictive model based on radiomics features and clinical factors for disease progression in early-stage non-small cell lung cancer treated with stereotactic ablative radiotherapy
title_sort combined predictive model based on radiomics features and clinical factors for disease progression in early-stage non-small cell lung cancer treated with stereotactic ablative radiotherapy
topic Oncology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9380646/
https://www.ncbi.nlm.nih.gov/pubmed/35982975
http://dx.doi.org/10.3389/fonc.2022.967360
work_keys_str_mv AT yanghong acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT wanglin acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT shaoguoliang acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT dongbaiqiang acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT wangfang acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT weiyuguo acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT lipu acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT chenhaiyan acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT chenwujie acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT zhengyao acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT heyiwei acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT zhaoyankun acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT duxianghui acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT sunxiaojiang acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT wangzhun acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT wangyuezhen acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT zhouxia acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT laixiaojing acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT fengwei acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT shenliming acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT qiuguoqing acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT jiyongling acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT chenjianxiang acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT jiangyouhua acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT liujinshi acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT zengjian acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT wangchangchun acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT zhaoqiang acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT yangxun acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT huxiao acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT mahonglian acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT chenqixun acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT chenming acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT jianghaitao acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT xuyujin acombinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT yanghong combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT wanglin combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT shaoguoliang combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT dongbaiqiang combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT wangfang combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT weiyuguo combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT lipu combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT chenhaiyan combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT chenwujie combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT zhengyao combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT heyiwei combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT zhaoyankun combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT duxianghui combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT sunxiaojiang combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT wangzhun combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT wangyuezhen combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT zhouxia combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT laixiaojing combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT fengwei combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT shenliming combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT qiuguoqing combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT jiyongling combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT chenjianxiang combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT jiangyouhua combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT liujinshi combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT zengjian combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT wangchangchun combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT zhaoqiang combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT yangxun combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT huxiao combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT mahonglian combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT chenqixun combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT chenming combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT jianghaitao combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy
AT xuyujin combinedpredictivemodelbasedonradiomicsfeaturesandclinicalfactorsfordiseaseprogressioninearlystagenonsmallcelllungcancertreatedwithstereotacticablativeradiotherapy