Cargando…
A machine learning framework supporting prospective clinical decisions applied to risk prediction in oncology
We present a general framework for developing a machine learning (ML) tool that supports clinician assessment of patient risk using electronic health record-derived real-world data and apply the framework to a quality improvement use case in an oncology setting to identify patients at risk for a nea...
Autores principales: | Coombs, Lorinda, Orlando, Abigail, Wang, Xiaoliang, Shaw, Pooja, Rich, Alexander S., Lakhtakia, Shreyas, Titchener, Karen, Adamson, Blythe, Miksad, Rebecca A., Mooney, Kathi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9380664/ https://www.ncbi.nlm.nih.gov/pubmed/35974092 http://dx.doi.org/10.1038/s41746-022-00660-3 |
Ejemplares similares
-
Age Is Not a Barrier: Older Adults With Cancer Derive Similar Benefit
in a Randomized Controlled Trial of a Remote Symptom Monitoring Intervention
Compared With Younger Adults
por: Coombs, Lorinda A., et al.
Publicado: (2020) -
A scoping review of the nurse practitioner workforce in oncology
por: Coombs, Lorinda A., et al.
Publicado: (2016) -
Evaluating the Impact of Oncology Care Model Reporting Requirements on Biomarker Testing and Treatment
por: Castellanos, Emily H., et al.
Publicado: (2020) -
Rationale and proposed framework for shared decision making in cardio-oncology
por: Hull, Sarah C., et al.
Publicado: (2021) -
A Causal Framework for Making Individualized Treatment Decisions in Oncology
por: Msaouel, Pavlos, et al.
Publicado: (2022)