Cargando…

Neurostructural Differences in Adolescents With Treatment-Resistant Depression and Treatment Effects of Transcranial Magnetic Stimulation

BACKGROUND: Despite its morbidity and mortality, the neurobiology of treatment-resistant depression (TRD) in adolescents and the impact of treatment on this neurobiology is poorly understood. METHODS: Using automatic segmentation in FreeSurfer, we examined brain magnetic resonance imaging baseline v...

Descripción completa

Detalles Bibliográficos
Autores principales: Seewoo, Bhedita J, Rodger, Jennifer, Demitrack, Mark A, Heart, Karen L, Port, John D, Strawn, Jeffrey R, Croarkin, Paul E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9380715/
https://www.ncbi.nlm.nih.gov/pubmed/35089358
http://dx.doi.org/10.1093/ijnp/pyac007
Descripción
Sumario:BACKGROUND: Despite its morbidity and mortality, the neurobiology of treatment-resistant depression (TRD) in adolescents and the impact of treatment on this neurobiology is poorly understood. METHODS: Using automatic segmentation in FreeSurfer, we examined brain magnetic resonance imaging baseline volumetric differences among healthy adolescents (n = 30), adolescents with major depressive disorder (MDD) (n = 19), and adolescents with TRD (n = 34) based on objective antidepressant treatment rating criteria. A pooled subsample of adolescents with TRD were treated with 6 weeks of active (n = 18) or sham (n = 7) 10-Hz transcranial magnetic stimulation (TMS) applied to the left dorsolateral prefrontal cortex. Ten of the adolescents treated with active TMS were part of an open-label trial. The other adolescents treated with active (n = 8) or sham (n = 7) were participants from a randomized controlled trial. RESULTS: Adolescents with TRD and adolescents with MDD had decreased total amygdala (TRD and MDD: −5%, P = .032) and caudal anterior cingulate cortex volumes (TRD: −3%, P = .030; MDD: −.03%, P = .041) compared with healthy adolescents. Six weeks of active TMS increased total amygdala volumes (+4%, P < .001) and the volume of the stimulated left dorsolateral prefrontal cortex (+.4%, P = .026) in adolescents with TRD. CONCLUSIONS: Amygdala volumes were reduced in this sample of adolescents with MDD and TRD. TMS may normalize this volumetric finding, raising the possibility that TMS has neurostructural frontolimbic effects in adolescents with TRD. TMS also appears to have positive effects proximal to the site of stimulation.