Cargando…

Characterisation of NLRP3 pathway-related neuroinflammation in temporal lobe epilepsy

OBJECTIVE: Inflammation of brain structures, in particular the hippocampal formation, can induce neuronal degeneration and be associated with increased excitability manifesting as propensity for repetitive seizures. An increase in the abundance of individual proinflammatory molecules including inter...

Descripción completa

Detalles Bibliográficos
Autores principales: Pohlentz, Malin S., Müller, Philipp, Cases-Cunillera, Silvia, Opitz, Thoralf, Surges, Rainer, Hamed, Motaz, Vatter, Hartmut, Schoch, Susanne, Becker, Albert J., Pitsch, Julika
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9380933/
https://www.ncbi.nlm.nih.gov/pubmed/35972937
http://dx.doi.org/10.1371/journal.pone.0271995
_version_ 1784768971990368256
author Pohlentz, Malin S.
Müller, Philipp
Cases-Cunillera, Silvia
Opitz, Thoralf
Surges, Rainer
Hamed, Motaz
Vatter, Hartmut
Schoch, Susanne
Becker, Albert J.
Pitsch, Julika
author_facet Pohlentz, Malin S.
Müller, Philipp
Cases-Cunillera, Silvia
Opitz, Thoralf
Surges, Rainer
Hamed, Motaz
Vatter, Hartmut
Schoch, Susanne
Becker, Albert J.
Pitsch, Julika
author_sort Pohlentz, Malin S.
collection PubMed
description OBJECTIVE: Inflammation of brain structures, in particular the hippocampal formation, can induce neuronal degeneration and be associated with increased excitability manifesting as propensity for repetitive seizures. An increase in the abundance of individual proinflammatory molecules including interleukin 1 beta has been observed in brain tissue samples of patients with pharmacoresistant temporal lobe epilepsy (TLE) and corresponding animal models. The NLRP3-inflammasome, a cytosolic protein complex, acts as a key regulator in proinflammatory innate immune signalling. Upon activation, it leads to the release of interleukin 1 beta and inflammation-mediated neurodegeneration. Transient brain insults, like status epilepticus (SE), can render hippocampi chronically hyperexcitable and induce segmental neurodegeneration. The underlying mechanisms are referred to as epileptogenesis. Here, we have tested the hypothesis that distinct NLRP3-dependent transcript and protein signalling dynamics are induced by SE and whether they differ between two classical SE models. We further correlated the association of NLRP3-related transcript abundance with convulsive activity in human TLE hippocampi of patients with and without associated neurodegenerative damage. METHODS: Hippocampal mRNA- and protein-expression of NLRP3 and associated signalling molecules were analysed longitudinally in pilocarpine- and kainic acid-induced SE TLE mouse models. Complementarily, we studied NLRP3 inflammasome-associated transcript patterns in epileptogenic hippocampi with different damage patterns of pharmacoresistant TLE patients that had undergone epilepsy surgery for seizure relief. RESULTS: Pilocarpine- and kainic acid-induced SE elicit distinct hippocampal Nlrp3-associated molecular signalling. Transcriptional activation of NLRP3 pathway elements is associated with seizure activity but independent of the particular neuronal damage phenotype in KA-induced and in human TLE hippocampi. SIGNIFICANCE: These data suggest highly dynamic inflammasome signalling in SE-induced TLE and highlight a vicious cycle associated with seizure activity. Our results provide promising perspectives for the inflammasome signalling pathway as a target for anti-epileptogenic and -convulsive therapeutic strategies. The latter may even applicable to a particularly broad spectrum of TLE patients with currently pharmacoresistant disease.
format Online
Article
Text
id pubmed-9380933
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-93809332022-08-17 Characterisation of NLRP3 pathway-related neuroinflammation in temporal lobe epilepsy Pohlentz, Malin S. Müller, Philipp Cases-Cunillera, Silvia Opitz, Thoralf Surges, Rainer Hamed, Motaz Vatter, Hartmut Schoch, Susanne Becker, Albert J. Pitsch, Julika PLoS One Research Article OBJECTIVE: Inflammation of brain structures, in particular the hippocampal formation, can induce neuronal degeneration and be associated with increased excitability manifesting as propensity for repetitive seizures. An increase in the abundance of individual proinflammatory molecules including interleukin 1 beta has been observed in brain tissue samples of patients with pharmacoresistant temporal lobe epilepsy (TLE) and corresponding animal models. The NLRP3-inflammasome, a cytosolic protein complex, acts as a key regulator in proinflammatory innate immune signalling. Upon activation, it leads to the release of interleukin 1 beta and inflammation-mediated neurodegeneration. Transient brain insults, like status epilepticus (SE), can render hippocampi chronically hyperexcitable and induce segmental neurodegeneration. The underlying mechanisms are referred to as epileptogenesis. Here, we have tested the hypothesis that distinct NLRP3-dependent transcript and protein signalling dynamics are induced by SE and whether they differ between two classical SE models. We further correlated the association of NLRP3-related transcript abundance with convulsive activity in human TLE hippocampi of patients with and without associated neurodegenerative damage. METHODS: Hippocampal mRNA- and protein-expression of NLRP3 and associated signalling molecules were analysed longitudinally in pilocarpine- and kainic acid-induced SE TLE mouse models. Complementarily, we studied NLRP3 inflammasome-associated transcript patterns in epileptogenic hippocampi with different damage patterns of pharmacoresistant TLE patients that had undergone epilepsy surgery for seizure relief. RESULTS: Pilocarpine- and kainic acid-induced SE elicit distinct hippocampal Nlrp3-associated molecular signalling. Transcriptional activation of NLRP3 pathway elements is associated with seizure activity but independent of the particular neuronal damage phenotype in KA-induced and in human TLE hippocampi. SIGNIFICANCE: These data suggest highly dynamic inflammasome signalling in SE-induced TLE and highlight a vicious cycle associated with seizure activity. Our results provide promising perspectives for the inflammasome signalling pathway as a target for anti-epileptogenic and -convulsive therapeutic strategies. The latter may even applicable to a particularly broad spectrum of TLE patients with currently pharmacoresistant disease. Public Library of Science 2022-08-16 /pmc/articles/PMC9380933/ /pubmed/35972937 http://dx.doi.org/10.1371/journal.pone.0271995 Text en © 2022 Pohlentz et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Pohlentz, Malin S.
Müller, Philipp
Cases-Cunillera, Silvia
Opitz, Thoralf
Surges, Rainer
Hamed, Motaz
Vatter, Hartmut
Schoch, Susanne
Becker, Albert J.
Pitsch, Julika
Characterisation of NLRP3 pathway-related neuroinflammation in temporal lobe epilepsy
title Characterisation of NLRP3 pathway-related neuroinflammation in temporal lobe epilepsy
title_full Characterisation of NLRP3 pathway-related neuroinflammation in temporal lobe epilepsy
title_fullStr Characterisation of NLRP3 pathway-related neuroinflammation in temporal lobe epilepsy
title_full_unstemmed Characterisation of NLRP3 pathway-related neuroinflammation in temporal lobe epilepsy
title_short Characterisation of NLRP3 pathway-related neuroinflammation in temporal lobe epilepsy
title_sort characterisation of nlrp3 pathway-related neuroinflammation in temporal lobe epilepsy
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9380933/
https://www.ncbi.nlm.nih.gov/pubmed/35972937
http://dx.doi.org/10.1371/journal.pone.0271995
work_keys_str_mv AT pohlentzmalins characterisationofnlrp3pathwayrelatedneuroinflammationintemporallobeepilepsy
AT mullerphilipp characterisationofnlrp3pathwayrelatedneuroinflammationintemporallobeepilepsy
AT casescunillerasilvia characterisationofnlrp3pathwayrelatedneuroinflammationintemporallobeepilepsy
AT opitzthoralf characterisationofnlrp3pathwayrelatedneuroinflammationintemporallobeepilepsy
AT surgesrainer characterisationofnlrp3pathwayrelatedneuroinflammationintemporallobeepilepsy
AT hamedmotaz characterisationofnlrp3pathwayrelatedneuroinflammationintemporallobeepilepsy
AT vatterhartmut characterisationofnlrp3pathwayrelatedneuroinflammationintemporallobeepilepsy
AT schochsusanne characterisationofnlrp3pathwayrelatedneuroinflammationintemporallobeepilepsy
AT beckeralbertj characterisationofnlrp3pathwayrelatedneuroinflammationintemporallobeepilepsy
AT pitschjulika characterisationofnlrp3pathwayrelatedneuroinflammationintemporallobeepilepsy