Cargando…
Longer leukocyte telomere length is associated with myeloid inflammation and increased mortality after transcatheter aortic valve replacement
AIMS: Inflammatory activation of leukocytes may limit prognosis of patients (pts) with severe aortic valve stenosis (AS) undergoing transcatheter aortic valve replacement (TAVR). Leukocyte telomere length (LTL) is a marker of proliferative capacity and inflammatory responsiveness but the impact of L...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9380992/ https://www.ncbi.nlm.nih.gov/pubmed/35983406 http://dx.doi.org/10.1093/ehjopen/oeac045 |
Sumario: | AIMS: Inflammatory activation of leukocytes may limit prognosis of patients (pts) with severe aortic valve stenosis (AS) undergoing transcatheter aortic valve replacement (TAVR). Leukocyte telomere length (LTL) is a marker of proliferative capacity and inflammatory responsiveness but the impact of LTL on the prognosis in AS remains elusive. The aim of this study was to analyse the association of LTL with inflammatory markers and prognosis of pts undergoing TAVR. METHODS AND RESULTS: LTL was analysed using quantitative real-time PCR in 285 consecutive pts (median age 82 years) undergoing TAVR and correlated with 18-month all-cause mortality. C-reactive protein was significantly elevated in pts with the longest LTL (P = 0.017), paralleled by increased procalcitonin (PCT) serum levels (P = 0.0006). This inflammatory reaction was accompanied by increased myeloid cells in the highest LTL tertile, mainly a rise in circulating neutrophils (P = 0.0025) and monocytes (P = 0.01). Multivariate analysis revealed LTL (HR 2.6, 95%CI 1.4–5.1, P= 0.004) and PCT levels (HR 4.3, 95%CI 1.7–11.0, P = 0.003) as independent predictors of mortality. CONCLUSIONS: Longer LTL is associated with increased mortality after TAVR. This might be explained by enhanced proliferative capacity of cells resulting in myeloid and systemic inflammation. Our findings suggest that targeting the specific inflammation pathways could present a novel strategy to augment survival in selected patients with degenerative aortic stenosis. |
---|