Cargando…
Sentiment Analysis of Texts on Public Health Emergencies Based on Social Media Data Mining
BACKGROUND: Since the COVID-19 pandemic, social media has become an important arena for the public to transmit and exchange messages, feelings, opinions, and information about the epidemic. In the era of social media, many UGC contents from self-media and various information about the epidemic on so...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9381183/ https://www.ncbi.nlm.nih.gov/pubmed/35983529 http://dx.doi.org/10.1155/2022/3964473 |
_version_ | 1784769020998713344 |
---|---|
author | Hu, Nan |
author_facet | Hu, Nan |
author_sort | Hu, Nan |
collection | PubMed |
description | BACKGROUND: Since the COVID-19 pandemic, social media has become an important arena for the public to transmit and exchange messages, feelings, opinions, and information about the epidemic. In the era of social media, many UGC contents from self-media and various information about the epidemic on social media have strong emotional colors. These contents are not only rich in resources for text sentiment analysis but also reveal the laws and characteristics of the evolution of users' emotional tendencies in public health emergencies. It even ties together the interaction between media content and society. OBJECTIVE: As the Sina Weibo platform's characteristics of communication are real-time, open, and “many-to-many,” the objective of this study is to collect Weibo-blog contents tagged with the outbreak of COVID-19 in a certain metropolis in China and analyze the emotional evolution situation of Weibo-blogs of the unexpected public health emergency involved. This will provide a dynamic understanding of the mechanisms underlying the evolution of emotional conditions in the context of public health emergencies. METHODS: This paper uses a Python crawler, the SnowNLP sentiment analysis model, and correlation analysis to calculate the emotional tendencies of the event “Covid-19 outbreak in a Chinese metropolis” on the Sina Weibo platform. The study was carried out in terms of the evolutionary stages of the event and the factors which induce it. RESULTS: This paper revealed characteristics of time-varying laws and dynamic propagation of users' emotional evolution in public health emergencies. (1) This study refers to the life cycle model of COVID-19, combined with the statistics of the time series of the quantities of Weibo-blog posting, and divides the law of the quantities of Weibo-blog posting changing with the event into three stages: outbreak period, stalemate period, and resolution period. (2) Users' emotional tendencies are changeable and unstable which are easily induced by various factors. (3) There is a significant positive correlation between the reported confirmed cases and the quantities of Weibo-blog posts. (4) Individual emotional tendencies will have a positive changing trend with the public's average emotional tendencies after the event occurs. (5) There is no correlation between reposts, comments, and Weibo-blog emotional tendencies. CONCLUSION: The research found that, given staged evolution and repeated fluctuations of emotional tendencies, relevant departments should effectively use this law and set up different response plans according to different stages. In addition, what is highly coupled with users' emotional tendencies is not only the information about the virus but more large-scale infected by different intensities of emotions. |
format | Online Article Text |
id | pubmed-9381183 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-93811832022-08-17 Sentiment Analysis of Texts on Public Health Emergencies Based on Social Media Data Mining Hu, Nan Comput Math Methods Med Research Article BACKGROUND: Since the COVID-19 pandemic, social media has become an important arena for the public to transmit and exchange messages, feelings, opinions, and information about the epidemic. In the era of social media, many UGC contents from self-media and various information about the epidemic on social media have strong emotional colors. These contents are not only rich in resources for text sentiment analysis but also reveal the laws and characteristics of the evolution of users' emotional tendencies in public health emergencies. It even ties together the interaction between media content and society. OBJECTIVE: As the Sina Weibo platform's characteristics of communication are real-time, open, and “many-to-many,” the objective of this study is to collect Weibo-blog contents tagged with the outbreak of COVID-19 in a certain metropolis in China and analyze the emotional evolution situation of Weibo-blogs of the unexpected public health emergency involved. This will provide a dynamic understanding of the mechanisms underlying the evolution of emotional conditions in the context of public health emergencies. METHODS: This paper uses a Python crawler, the SnowNLP sentiment analysis model, and correlation analysis to calculate the emotional tendencies of the event “Covid-19 outbreak in a Chinese metropolis” on the Sina Weibo platform. The study was carried out in terms of the evolutionary stages of the event and the factors which induce it. RESULTS: This paper revealed characteristics of time-varying laws and dynamic propagation of users' emotional evolution in public health emergencies. (1) This study refers to the life cycle model of COVID-19, combined with the statistics of the time series of the quantities of Weibo-blog posting, and divides the law of the quantities of Weibo-blog posting changing with the event into three stages: outbreak period, stalemate period, and resolution period. (2) Users' emotional tendencies are changeable and unstable which are easily induced by various factors. (3) There is a significant positive correlation between the reported confirmed cases and the quantities of Weibo-blog posts. (4) Individual emotional tendencies will have a positive changing trend with the public's average emotional tendencies after the event occurs. (5) There is no correlation between reposts, comments, and Weibo-blog emotional tendencies. CONCLUSION: The research found that, given staged evolution and repeated fluctuations of emotional tendencies, relevant departments should effectively use this law and set up different response plans according to different stages. In addition, what is highly coupled with users' emotional tendencies is not only the information about the virus but more large-scale infected by different intensities of emotions. Hindawi 2022-08-09 /pmc/articles/PMC9381183/ /pubmed/35983529 http://dx.doi.org/10.1155/2022/3964473 Text en Copyright © 2022 Nan Hu. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Hu, Nan Sentiment Analysis of Texts on Public Health Emergencies Based on Social Media Data Mining |
title | Sentiment Analysis of Texts on Public Health Emergencies Based on Social Media Data Mining |
title_full | Sentiment Analysis of Texts on Public Health Emergencies Based on Social Media Data Mining |
title_fullStr | Sentiment Analysis of Texts on Public Health Emergencies Based on Social Media Data Mining |
title_full_unstemmed | Sentiment Analysis of Texts on Public Health Emergencies Based on Social Media Data Mining |
title_short | Sentiment Analysis of Texts on Public Health Emergencies Based on Social Media Data Mining |
title_sort | sentiment analysis of texts on public health emergencies based on social media data mining |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9381183/ https://www.ncbi.nlm.nih.gov/pubmed/35983529 http://dx.doi.org/10.1155/2022/3964473 |
work_keys_str_mv | AT hunan sentimentanalysisoftextsonpublichealthemergenciesbasedonsocialmediadatamining |