Cargando…
Analysis of e-Mail Spam Detection Using a Novel Machine Learning-Based Hybrid Bagging Technique
e-mail service providers and consumers find it challenging to distinguish between spam and nonspam e-mails. The purpose of spammers is to spread false information by sending annoying messages that catch the attention of the public. Various spam identification techniques have been suggested and evalu...
Autor principal: | Rayan, Alanazi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9381222/ https://www.ncbi.nlm.nih.gov/pubmed/35983156 http://dx.doi.org/10.1155/2022/2500772 |
Ejemplares similares
-
Academic E-Mail Overload and the Burden of “Academic Spam”
por: Wood, Kelly E., et al.
Publicado: (2020) -
Take control of spam with Apple Mail
por: Kissell, Joe
Publicado: (2009) -
Efficient E-Mail Spam Detection Strategy Using Genetic Decision Tree Processing with NLP Features
por: Ismail, Safaa S. I., et al.
Publicado: (2022) -
Real-Time Twitter Spam Detection and Sentiment Analysis using Machine Learning and Deep Learning Techniques
por: Rodrigues, Anisha P, et al.
Publicado: (2022) -
PreciseMail anti-spam gateway allows users more control over spam definitions; unwanted email is eliminated with no false positives
por: ten Bruggencate, J
Publicado: (2003)