Cargando…
Antiocclusion Visual Tracking Algorithm Combining Fully Convolutional Siamese Network and Correlation Filtering
Machine learning only uses single-channel grayscale features to model the target, and the filter solution process is relatively simple. When the target has a large change relative to the initial frame, the tracking effect is poor. When there is the same kind of target interference in the target sear...
Autores principales: | Tao, Xiaomiao, Wu, Kaijun, Wang, Yongshun, Li, Panfeng, Huang, Tao, Bai, Chenshuai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9381228/ https://www.ncbi.nlm.nih.gov/pubmed/35983142 http://dx.doi.org/10.1155/2022/8051876 |
Ejemplares similares
-
Improved Fully Convolutional Siamese Networks for Visual Object Tracking Based on Response Behaviour Analysis
por: Huang, Xianyun, et al.
Publicado: (2022) -
Robust Visual Tracking Based on Adaptive Convolutional Features and Offline Siamese Tracker
por: Zhang, Ximing, et al.
Publicado: (2018) -
Siamese network with a depthwise over-parameterized convolutional layer for visual tracking
por: Wang, Yuanyun, et al.
Publicado: (2022) -
SiamMFC: Visual Object Tracking Based on Mainfold Full Convolution Siamese Network
por: Chen, Jia, et al.
Publicado: (2021) -
Combined Kalman Filter and Multifeature Fusion Siamese Network for Real-Time Visual Tracking
por: Zhou, Lijun, et al.
Publicado: (2019)