Cargando…
Semi-supervised COVID-19 CT image segmentation using deep generative models
BACKGROUND: A recurring problem in image segmentation is a lack of labelled data. This problem is especially acute in the segmentation of lung computed tomography (CT) of patients with Coronavirus Disease 2019 (COVID-19). The reason for this is simple: the disease has not been prevalent long enough...
Autores principales: | Zammit, Judah, Fung, Daryl L. X., Liu, Qian, Leung, Carson Kai-Sang, Hu, Pingzhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9381397/ https://www.ncbi.nlm.nih.gov/pubmed/35974325 http://dx.doi.org/10.1186/s12859-022-04878-6 |
Ejemplares similares
-
Self-supervised deep learning model for COVID-19 lung CT image segmentation highlighting putative causal relationship among age, underlying disease and COVID-19
por: Fung, Daryl L. X., et al.
Publicado: (2021) -
Finding combinatorial histone code by semi-supervised biclustering
por: Teng, Li, et al.
Publicado: (2012) -
Semi-supervised consensus clustering for gene expression data analysis
por: Wang, Yunli, et al.
Publicado: (2014) -
Semi-supervised discovery of differential genes
por: Oba, Shigeyuki, et al.
Publicado: (2006) -
Deep semi-supervised learning ensemble framework for classifying co-mentions of human proteins and phenotypes
por: Pourreza Shahri, Morteza, et al.
Publicado: (2021)