Cargando…
Predicting odor from molecular structure: a multi-label classification approach
Decoding the factors behind odor perception has long been a challenge in the field of human neuroscience, olfactory research, perfumery, psychology, biology and chemistry. The new wave of data-driven and machine learning approaches to predicting molecular properties are a growing area of research in...
Autores principales: | Saini, Kushagra, Ramanathan, Venkatnarayan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9381526/ https://www.ncbi.nlm.nih.gov/pubmed/35974078 http://dx.doi.org/10.1038/s41598-022-18086-y |
Ejemplares similares
-
Conformational and structural stability of n and 2-propylthiols: a revisit
por: Tripathi, Manish Kumar, et al.
Publicado: (2022) -
Conformational stability and structural analysis of methanethiol clusters: a revisit
por: Tripathi, Manish Kumar, et al.
Publicado: (2021) -
Predicting Odor Perceptual Similarity from Odor Structure
por: Snitz, Kobi, et al.
Publicado: (2013) -
Interval prediction for graded multi-label classification
por: Lastra, Gerardo, et al.
Publicado: (2014) -
Smell compounds classification using UMAP to increase knowledge of odors and molecular structures linkages
por: Rugard, Marylène, et al.
Publicado: (2021)