Cargando…
Deep learning predicts all-cause mortality from longitudinal total-body DXA imaging
BACKGROUND: Mortality research has identified biomarkers predictive of all-cause mortality risk. Most of these markers, such as body mass index, are predictive cross-sectionally, while for others the longitudinal change has been shown to be predictive, for instance greater-than-average muscle and we...
Autores principales: | Glaser, Yannik, Shepherd, John, Leong, Lambert, Wolfgruber, Thomas, Lui, Li-Yung, Sadowski, Peter, Cummings, Steven R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9381587/ https://www.ncbi.nlm.nih.gov/pubmed/35992891 http://dx.doi.org/10.1038/s43856-022-00166-9 |
Ejemplares similares
-
Whole-body DXA evaluation in HIV patients
por: Lazăr, Mihai, et al.
Publicado: (2014) -
The impact of obesity on the accuracy of DXA BMD for DXA-equivalent BMD estimation
por: Kim, Min-Woo, et al.
Publicado: (2022) -
Body Composition by CT vs. DXA: Long-Term Prediction of Mortality in the Health Health ABC Cohort
por: Farsijani, Samaneh, et al.
Publicado: (2020) -
Creatine monohydrate supplementation changes total body water and DXA lean mass estimates in female collegiate dancers
por: Brooks, Samantha J., et al.
Publicado: (2023) -
Longitudinal effects of swimming on bone in adolescents: a pQCT and DXA study
por: Gomez-Bruton, Alejandro, et al.
Publicado: (2017)