Cargando…
CardiSort: a convolutional neural network for cross vendor automated sorting of cardiac MR images
OBJECTIVES: To develop an image-based automatic deep learning method to classify cardiac MR images by sequence type and imaging plane for improved clinical post-processing efficiency. METHODS: Multivendor cardiac MRI studies were retrospectively collected from 4 centres and 3 vendors. A two-head con...
Autores principales: | Lim, Ruth P., Kachel, Stefan, Villa, Adriana D. M., Kearney, Leighton, Bettencourt, Nuno, Young, Alistair A., Chiribiri, Amedeo, Scannell, Cian M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9381634/ https://www.ncbi.nlm.nih.gov/pubmed/35368227 http://dx.doi.org/10.1007/s00330-022-08724-4 |
Ejemplares similares
-
SeedSortNet: a rapid and highly effificient lightweight CNN based on visual attention for seed sorting
por: Li, Chunlei, et al.
Publicado: (2021) -
Automated segmentation of craniopharyngioma on MR images using U-Net-based deep convolutional neural network
por: Chen, Chaoyue, et al.
Publicado: (2022) -
Application of a validated prostate MRI deep learning system to independent same-vendor multi-institutional data: demonstration of transferability
por: Netzer, Nils, et al.
Publicado: (2023) -
Precise diagnosis of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network
por: Ye, Hai, et al.
Publicado: (2019) -
Systematic review of research design and reporting of imaging studies applying convolutional neural networks for radiological cancer diagnosis
por: O’Shea, Robert J., et al.
Publicado: (2021)