Cargando…
Asymptotics of the Determinant of Discrete Laplacians on Triangulated and Quadrangulated Surfaces
Consider a surface [Formula: see text] with a boundary obtained by gluing together a finite number of equilateral triangles, or squares, along their boundaries, equipped with a vector bundle with a flat unitary connection. Let [Formula: see text] be a discretization of this surface, in which each tr...
Autores principales: | Izyurov, Konstantin, Khristoforov, Mikhail |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9381636/ https://www.ncbi.nlm.nih.gov/pubmed/35992732 http://dx.doi.org/10.1007/s00220-022-04437-3 |
Ejemplares similares
-
Computing convex quadrangulations()
por: Schiffer, T., et al.
Publicado: (2012) -
On the asymptotic analysis of the discrete Dirac equation
por: Gunn, C, et al.
Publicado: (1994) -
Asymptotic behavior of Laplacian-energy-like invariant of the 3.6.24 lattice with various boundary conditions
por: Liu, Jia-Bao, et al.
Publicado: (2016) -
Multiplicity and asymptotic behavior of solutions to a class of Kirchhoff-type equations involving the fractional p-Laplacian
por: Shen, Liejun
Publicado: (2018) -
Laplacian growth on branched Riemann surfaces
por: Gustafsson, Björn, et al.
Publicado: (2021)