Cargando…
Critical Review on cathode–electrolyte Interphase Toward High-Voltage Cathodes for Li-Ion Batteries
The thermal stability window of current commercial carbonate-based electrolytes is no longer sufficient to meet the ever-increasing cathode working voltage requirements of high energy density lithium-ion batteries. It is crucial to construct a robust cathode–electrolyte interphase (CEI) for high-vol...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9381680/ https://www.ncbi.nlm.nih.gov/pubmed/35974213 http://dx.doi.org/10.1007/s40820-022-00917-2 |
Sumario: | The thermal stability window of current commercial carbonate-based electrolytes is no longer sufficient to meet the ever-increasing cathode working voltage requirements of high energy density lithium-ion batteries. It is crucial to construct a robust cathode–electrolyte interphase (CEI) for high-voltage cathode electrodes to separate the electrolytes from the active cathode materials and thereby suppress the side reactions. Herein, this review presents a brief historic evolution of the mechanism of CEI formation and compositions, the state-of-art characterizations and modeling associated with CEI, and how to construct robust CEI from a practical electrolyte design perspective. The focus on electrolyte design is categorized into three parts: CEI-forming additives, anti-oxidation solvents, and lithium salts. Moreover, practical considerations for electrolyte design applications are proposed. This review will shed light on the future electrolyte design which enables aggressive high-voltage cathodes. [Image: see text] |
---|