Cargando…

Application of SHAP values for inferring the optimal functional form of covariates in pharmacokinetic modeling

In population pharmacokinetic (PK) models, interindividual variability is explained by implementation of covariates in the model. The widely used forward stepwise selection method is sensitive to bias, which may lead to an incorrect inclusion of covariates. Alternatives, such as the full fixed effec...

Descripción completa

Detalles Bibliográficos
Autores principales: Janssen, Alexander, Hoogendoorn, Mark, Cnossen, Marjon H., Mathôt, Ron A. A., Cnossen, M. H., Reitsma, S. H., Leebeek, F. W. G., Mathôt, R. A. A., Fijnvandraat, K., Coppens, M., Meijer, K., Schols, S. E. M., Eikenboom, H. C. J., Schutgens, R. E. G., Beckers, E. A. M., Ypma, P., Kruip, M. J. H. A., Polinder, S., Tamminga, R. Y. J., Brons, P., Fischer, K., van Galen, K. P. M., Heubel‐Moenen, F. C. J. I., Nieuwenhuizen, L., Driessens, M. H. E., van Vliet, I., Lock, J., Hazendonk, H. C. A. M., van Moort, I., Heijdra, J. M., Goedhart, M. H. J., Al Arashi, W., Preijers, T., de Jager, N. C. B., Bukkems, L. H., Cloesmeijer, M. E., Janssen, A., Collins, P. W., Liesner, R., Chowdary, P., Millar, C. M., Hart, D., Keeling, D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9381890/
http://dx.doi.org/10.1002/psp4.12828
_version_ 1784769176121901056
author Janssen, Alexander
Hoogendoorn, Mark
Cnossen, Marjon H.
Mathôt, Ron A. A.
Cnossen, M. H.
Reitsma, S. H.
Leebeek, F. W. G.
Mathôt, R. A. A.
Fijnvandraat, K.
Coppens, M.
Meijer, K.
Schols, S. E. M.
Eikenboom, H. C. J.
Schutgens, R. E. G.
Beckers, E. A. M.
Ypma, P.
Kruip, M. J. H. A.
Polinder, S.
Tamminga, R. Y. J.
Brons, P.
Fischer, K.
van Galen, K. P. M.
Heubel‐Moenen, F. C. J. I.
Nieuwenhuizen, L.
Driessens, M. H. E.
van Vliet, I.
Lock, J.
Hazendonk, H. C. A. M.
van Moort, I.
Heijdra, J. M.
Goedhart, M. H. J.
Al Arashi, W.
Preijers, T.
de Jager, N. C. B.
Bukkems, L. H.
Cloesmeijer, M. E.
Janssen, A.
Collins, P. W.
Liesner, R.
Chowdary, P.
Millar, C. M.
Hart, D.
Keeling, D.
author_facet Janssen, Alexander
Hoogendoorn, Mark
Cnossen, Marjon H.
Mathôt, Ron A. A.
Cnossen, M. H.
Reitsma, S. H.
Leebeek, F. W. G.
Mathôt, R. A. A.
Fijnvandraat, K.
Coppens, M.
Meijer, K.
Schols, S. E. M.
Eikenboom, H. C. J.
Schutgens, R. E. G.
Beckers, E. A. M.
Ypma, P.
Kruip, M. J. H. A.
Polinder, S.
Tamminga, R. Y. J.
Brons, P.
Fischer, K.
van Galen, K. P. M.
Heubel‐Moenen, F. C. J. I.
Nieuwenhuizen, L.
Driessens, M. H. E.
van Vliet, I.
Lock, J.
Hazendonk, H. C. A. M.
van Moort, I.
Heijdra, J. M.
Goedhart, M. H. J.
Al Arashi, W.
Preijers, T.
de Jager, N. C. B.
Bukkems, L. H.
Cloesmeijer, M. E.
Janssen, A.
Collins, P. W.
Liesner, R.
Chowdary, P.
Millar, C. M.
Hart, D.
Keeling, D.
author_sort Janssen, Alexander
collection PubMed
description In population pharmacokinetic (PK) models, interindividual variability is explained by implementation of covariates in the model. The widely used forward stepwise selection method is sensitive to bias, which may lead to an incorrect inclusion of covariates. Alternatives, such as the full fixed effects model, reduce this bias but are dependent on the chosen implementation of each covariate. As the correct functional forms are unknown, this may still lead to an inaccurate selection of covariates. Machine learning (ML) techniques can potentially be used to learn the optimal functional forms for implementing covariates directly from data. A recent study suggested that using ML resulted in an improved selection of influential covariates. However, how do we select the appropriate functional form for including these covariates? In this work, we use SHapley Additive exPlanations (SHAP) to infer the relationship between covariates and PK parameters from ML models. As a case‐study, we use data from 119 patients with hemophilia A receiving clotting factor VIII concentrate peri‐operatively. We fit both a random forest and a XGBoost model to predict empirical Bayes estimated clearance and central volume from a base nonlinear mixed effects model. Next, we show that SHAP reveals covariate relationships which match previous findings. In addition, we can reveal subtle effects arising from combinations of covariates difficult to obtain using other methods of covariate analysis. We conclude that the proposed method can be used to extend ML‐based covariate selection, and holds potential as a complete full model alternative to classical covariate analyses.
format Online
Article
Text
id pubmed-9381890
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-93818902022-08-19 Application of SHAP values for inferring the optimal functional form of covariates in pharmacokinetic modeling Janssen, Alexander Hoogendoorn, Mark Cnossen, Marjon H. Mathôt, Ron A. A. Cnossen, M. H. Reitsma, S. H. Leebeek, F. W. G. Mathôt, R. A. A. Fijnvandraat, K. Coppens, M. Meijer, K. Schols, S. E. M. Eikenboom, H. C. J. Schutgens, R. E. G. Beckers, E. A. M. Ypma, P. Kruip, M. J. H. A. Polinder, S. Tamminga, R. Y. J. Brons, P. Fischer, K. van Galen, K. P. M. Heubel‐Moenen, F. C. J. I. Nieuwenhuizen, L. Driessens, M. H. E. van Vliet, I. Lock, J. Hazendonk, H. C. A. M. van Moort, I. Heijdra, J. M. Goedhart, M. H. J. Al Arashi, W. Preijers, T. de Jager, N. C. B. Bukkems, L. H. Cloesmeijer, M. E. Janssen, A. Collins, P. W. Liesner, R. Chowdary, P. Millar, C. M. Hart, D. Keeling, D. CPT Pharmacometrics Syst Pharmacol Research In population pharmacokinetic (PK) models, interindividual variability is explained by implementation of covariates in the model. The widely used forward stepwise selection method is sensitive to bias, which may lead to an incorrect inclusion of covariates. Alternatives, such as the full fixed effects model, reduce this bias but are dependent on the chosen implementation of each covariate. As the correct functional forms are unknown, this may still lead to an inaccurate selection of covariates. Machine learning (ML) techniques can potentially be used to learn the optimal functional forms for implementing covariates directly from data. A recent study suggested that using ML resulted in an improved selection of influential covariates. However, how do we select the appropriate functional form for including these covariates? In this work, we use SHapley Additive exPlanations (SHAP) to infer the relationship between covariates and PK parameters from ML models. As a case‐study, we use data from 119 patients with hemophilia A receiving clotting factor VIII concentrate peri‐operatively. We fit both a random forest and a XGBoost model to predict empirical Bayes estimated clearance and central volume from a base nonlinear mixed effects model. Next, we show that SHAP reveals covariate relationships which match previous findings. In addition, we can reveal subtle effects arising from combinations of covariates difficult to obtain using other methods of covariate analysis. We conclude that the proposed method can be used to extend ML‐based covariate selection, and holds potential as a complete full model alternative to classical covariate analyses. John Wiley and Sons Inc. 2022-06-24 2022-08 /pmc/articles/PMC9381890/ http://dx.doi.org/10.1002/psp4.12828 Text en © 2022 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Janssen, Alexander
Hoogendoorn, Mark
Cnossen, Marjon H.
Mathôt, Ron A. A.
Cnossen, M. H.
Reitsma, S. H.
Leebeek, F. W. G.
Mathôt, R. A. A.
Fijnvandraat, K.
Coppens, M.
Meijer, K.
Schols, S. E. M.
Eikenboom, H. C. J.
Schutgens, R. E. G.
Beckers, E. A. M.
Ypma, P.
Kruip, M. J. H. A.
Polinder, S.
Tamminga, R. Y. J.
Brons, P.
Fischer, K.
van Galen, K. P. M.
Heubel‐Moenen, F. C. J. I.
Nieuwenhuizen, L.
Driessens, M. H. E.
van Vliet, I.
Lock, J.
Hazendonk, H. C. A. M.
van Moort, I.
Heijdra, J. M.
Goedhart, M. H. J.
Al Arashi, W.
Preijers, T.
de Jager, N. C. B.
Bukkems, L. H.
Cloesmeijer, M. E.
Janssen, A.
Collins, P. W.
Liesner, R.
Chowdary, P.
Millar, C. M.
Hart, D.
Keeling, D.
Application of SHAP values for inferring the optimal functional form of covariates in pharmacokinetic modeling
title Application of SHAP values for inferring the optimal functional form of covariates in pharmacokinetic modeling
title_full Application of SHAP values for inferring the optimal functional form of covariates in pharmacokinetic modeling
title_fullStr Application of SHAP values for inferring the optimal functional form of covariates in pharmacokinetic modeling
title_full_unstemmed Application of SHAP values for inferring the optimal functional form of covariates in pharmacokinetic modeling
title_short Application of SHAP values for inferring the optimal functional form of covariates in pharmacokinetic modeling
title_sort application of shap values for inferring the optimal functional form of covariates in pharmacokinetic modeling
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9381890/
http://dx.doi.org/10.1002/psp4.12828
work_keys_str_mv AT janssenalexander applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT hoogendoornmark applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT cnossenmarjonh applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT mathotronaa applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT cnossenmh applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT reitsmash applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT leebeekfwg applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT mathotraa applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT fijnvandraatk applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT coppensm applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT meijerk applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT scholssem applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT eikenboomhcj applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT schutgensreg applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT beckerseam applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT ypmap applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT kruipmjha applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT polinders applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT tammingaryj applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT bronsp applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT fischerk applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT vangalenkpm applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT heubelmoenenfcji applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT nieuwenhuizenl applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT driessensmhe applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT vanvlieti applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT lockj applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT hazendonkhcam applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT vanmoorti applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT heijdrajm applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT goedhartmhj applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT alarashiw applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT preijerst applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT dejagerncb applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT bukkemslh applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT cloesmeijerme applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT janssena applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT collinspw applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT liesnerr applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT chowdaryp applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT millarcm applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT hartd applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling
AT keelingd applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling