Cargando…
Application of SHAP values for inferring the optimal functional form of covariates in pharmacokinetic modeling
In population pharmacokinetic (PK) models, interindividual variability is explained by implementation of covariates in the model. The widely used forward stepwise selection method is sensitive to bias, which may lead to an incorrect inclusion of covariates. Alternatives, such as the full fixed effec...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9381890/ http://dx.doi.org/10.1002/psp4.12828 |
_version_ | 1784769176121901056 |
---|---|
author | Janssen, Alexander Hoogendoorn, Mark Cnossen, Marjon H. Mathôt, Ron A. A. Cnossen, M. H. Reitsma, S. H. Leebeek, F. W. G. Mathôt, R. A. A. Fijnvandraat, K. Coppens, M. Meijer, K. Schols, S. E. M. Eikenboom, H. C. J. Schutgens, R. E. G. Beckers, E. A. M. Ypma, P. Kruip, M. J. H. A. Polinder, S. Tamminga, R. Y. J. Brons, P. Fischer, K. van Galen, K. P. M. Heubel‐Moenen, F. C. J. I. Nieuwenhuizen, L. Driessens, M. H. E. van Vliet, I. Lock, J. Hazendonk, H. C. A. M. van Moort, I. Heijdra, J. M. Goedhart, M. H. J. Al Arashi, W. Preijers, T. de Jager, N. C. B. Bukkems, L. H. Cloesmeijer, M. E. Janssen, A. Collins, P. W. Liesner, R. Chowdary, P. Millar, C. M. Hart, D. Keeling, D. |
author_facet | Janssen, Alexander Hoogendoorn, Mark Cnossen, Marjon H. Mathôt, Ron A. A. Cnossen, M. H. Reitsma, S. H. Leebeek, F. W. G. Mathôt, R. A. A. Fijnvandraat, K. Coppens, M. Meijer, K. Schols, S. E. M. Eikenboom, H. C. J. Schutgens, R. E. G. Beckers, E. A. M. Ypma, P. Kruip, M. J. H. A. Polinder, S. Tamminga, R. Y. J. Brons, P. Fischer, K. van Galen, K. P. M. Heubel‐Moenen, F. C. J. I. Nieuwenhuizen, L. Driessens, M. H. E. van Vliet, I. Lock, J. Hazendonk, H. C. A. M. van Moort, I. Heijdra, J. M. Goedhart, M. H. J. Al Arashi, W. Preijers, T. de Jager, N. C. B. Bukkems, L. H. Cloesmeijer, M. E. Janssen, A. Collins, P. W. Liesner, R. Chowdary, P. Millar, C. M. Hart, D. Keeling, D. |
author_sort | Janssen, Alexander |
collection | PubMed |
description | In population pharmacokinetic (PK) models, interindividual variability is explained by implementation of covariates in the model. The widely used forward stepwise selection method is sensitive to bias, which may lead to an incorrect inclusion of covariates. Alternatives, such as the full fixed effects model, reduce this bias but are dependent on the chosen implementation of each covariate. As the correct functional forms are unknown, this may still lead to an inaccurate selection of covariates. Machine learning (ML) techniques can potentially be used to learn the optimal functional forms for implementing covariates directly from data. A recent study suggested that using ML resulted in an improved selection of influential covariates. However, how do we select the appropriate functional form for including these covariates? In this work, we use SHapley Additive exPlanations (SHAP) to infer the relationship between covariates and PK parameters from ML models. As a case‐study, we use data from 119 patients with hemophilia A receiving clotting factor VIII concentrate peri‐operatively. We fit both a random forest and a XGBoost model to predict empirical Bayes estimated clearance and central volume from a base nonlinear mixed effects model. Next, we show that SHAP reveals covariate relationships which match previous findings. In addition, we can reveal subtle effects arising from combinations of covariates difficult to obtain using other methods of covariate analysis. We conclude that the proposed method can be used to extend ML‐based covariate selection, and holds potential as a complete full model alternative to classical covariate analyses. |
format | Online Article Text |
id | pubmed-9381890 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-93818902022-08-19 Application of SHAP values for inferring the optimal functional form of covariates in pharmacokinetic modeling Janssen, Alexander Hoogendoorn, Mark Cnossen, Marjon H. Mathôt, Ron A. A. Cnossen, M. H. Reitsma, S. H. Leebeek, F. W. G. Mathôt, R. A. A. Fijnvandraat, K. Coppens, M. Meijer, K. Schols, S. E. M. Eikenboom, H. C. J. Schutgens, R. E. G. Beckers, E. A. M. Ypma, P. Kruip, M. J. H. A. Polinder, S. Tamminga, R. Y. J. Brons, P. Fischer, K. van Galen, K. P. M. Heubel‐Moenen, F. C. J. I. Nieuwenhuizen, L. Driessens, M. H. E. van Vliet, I. Lock, J. Hazendonk, H. C. A. M. van Moort, I. Heijdra, J. M. Goedhart, M. H. J. Al Arashi, W. Preijers, T. de Jager, N. C. B. Bukkems, L. H. Cloesmeijer, M. E. Janssen, A. Collins, P. W. Liesner, R. Chowdary, P. Millar, C. M. Hart, D. Keeling, D. CPT Pharmacometrics Syst Pharmacol Research In population pharmacokinetic (PK) models, interindividual variability is explained by implementation of covariates in the model. The widely used forward stepwise selection method is sensitive to bias, which may lead to an incorrect inclusion of covariates. Alternatives, such as the full fixed effects model, reduce this bias but are dependent on the chosen implementation of each covariate. As the correct functional forms are unknown, this may still lead to an inaccurate selection of covariates. Machine learning (ML) techniques can potentially be used to learn the optimal functional forms for implementing covariates directly from data. A recent study suggested that using ML resulted in an improved selection of influential covariates. However, how do we select the appropriate functional form for including these covariates? In this work, we use SHapley Additive exPlanations (SHAP) to infer the relationship between covariates and PK parameters from ML models. As a case‐study, we use data from 119 patients with hemophilia A receiving clotting factor VIII concentrate peri‐operatively. We fit both a random forest and a XGBoost model to predict empirical Bayes estimated clearance and central volume from a base nonlinear mixed effects model. Next, we show that SHAP reveals covariate relationships which match previous findings. In addition, we can reveal subtle effects arising from combinations of covariates difficult to obtain using other methods of covariate analysis. We conclude that the proposed method can be used to extend ML‐based covariate selection, and holds potential as a complete full model alternative to classical covariate analyses. John Wiley and Sons Inc. 2022-06-24 2022-08 /pmc/articles/PMC9381890/ http://dx.doi.org/10.1002/psp4.12828 Text en © 2022 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Janssen, Alexander Hoogendoorn, Mark Cnossen, Marjon H. Mathôt, Ron A. A. Cnossen, M. H. Reitsma, S. H. Leebeek, F. W. G. Mathôt, R. A. A. Fijnvandraat, K. Coppens, M. Meijer, K. Schols, S. E. M. Eikenboom, H. C. J. Schutgens, R. E. G. Beckers, E. A. M. Ypma, P. Kruip, M. J. H. A. Polinder, S. Tamminga, R. Y. J. Brons, P. Fischer, K. van Galen, K. P. M. Heubel‐Moenen, F. C. J. I. Nieuwenhuizen, L. Driessens, M. H. E. van Vliet, I. Lock, J. Hazendonk, H. C. A. M. van Moort, I. Heijdra, J. M. Goedhart, M. H. J. Al Arashi, W. Preijers, T. de Jager, N. C. B. Bukkems, L. H. Cloesmeijer, M. E. Janssen, A. Collins, P. W. Liesner, R. Chowdary, P. Millar, C. M. Hart, D. Keeling, D. Application of SHAP values for inferring the optimal functional form of covariates in pharmacokinetic modeling |
title | Application of SHAP values for inferring the optimal functional form of covariates in pharmacokinetic modeling |
title_full | Application of SHAP values for inferring the optimal functional form of covariates in pharmacokinetic modeling |
title_fullStr | Application of SHAP values for inferring the optimal functional form of covariates in pharmacokinetic modeling |
title_full_unstemmed | Application of SHAP values for inferring the optimal functional form of covariates in pharmacokinetic modeling |
title_short | Application of SHAP values for inferring the optimal functional form of covariates in pharmacokinetic modeling |
title_sort | application of shap values for inferring the optimal functional form of covariates in pharmacokinetic modeling |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9381890/ http://dx.doi.org/10.1002/psp4.12828 |
work_keys_str_mv | AT janssenalexander applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT hoogendoornmark applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT cnossenmarjonh applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT mathotronaa applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT cnossenmh applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT reitsmash applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT leebeekfwg applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT mathotraa applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT fijnvandraatk applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT coppensm applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT meijerk applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT scholssem applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT eikenboomhcj applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT schutgensreg applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT beckerseam applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT ypmap applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT kruipmjha applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT polinders applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT tammingaryj applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT bronsp applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT fischerk applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT vangalenkpm applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT heubelmoenenfcji applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT nieuwenhuizenl applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT driessensmhe applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT vanvlieti applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT lockj applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT hazendonkhcam applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT vanmoorti applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT heijdrajm applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT goedhartmhj applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT alarashiw applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT preijerst applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT dejagerncb applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT bukkemslh applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT cloesmeijerme applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT janssena applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT collinspw applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT liesnerr applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT chowdaryp applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT millarcm applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT hartd applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling AT keelingd applicationofshapvaluesforinferringtheoptimalfunctionalformofcovariatesinpharmacokineticmodeling |