Cargando…
Machine learning algorithms to estimate everolimus exposure trained on simulated and patient pharmacokinetic profiles
Everolimus is an immunosuppressant with a small therapeutic index and large between‐patient variability. The area under the concentration versus time curve (AUC) is the best marker of exposure but measuring it requires collecting many blood samples. The objective of this study was to train machine l...
Autores principales: | Labriffe, Marc, Woillard, Jean‐Baptiste, Debord, Jean, Marquet, Pierre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9381914/ https://www.ncbi.nlm.nih.gov/pubmed/35599364 http://dx.doi.org/10.1002/psp4.12810 |
Ejemplares similares
-
Influence of cyclosporine and everolimus on the main mycophenolate mofetil pharmacokinetic parameters: Cross-sectional study
por: Noreikaitė, Aurelija, et al.
Publicado: (2017) -
Why dose adjust systemic exposure when looking for associations with adverse events in tacrolimus‐treated transplant recipients?
por: Robertsen, Ida, et al.
Publicado: (2019) -
Pharmacogenetic—Whole blood and intracellular pharmacokinetic—Pharmacodynamic (PG-PK(2)-PD) relationship of tacrolimus in liver transplant recipients
por: Tron, Camille, et al.
Publicado: (2020) -
Everolimus pharmacokinetics and its exposure–toxicity relationship in patients with thyroid cancer
por: de Wit, D., et al.
Publicado: (2016) -
Everolimus pharmacokinetics and exposure-response relationship in Japanese patients with advanced breast cancer
por: Hirabatake, Masaki, et al.
Publicado: (2022)