Cargando…
Contribution of machine learning to tumor growth inhibition modeling for hepatocellular carcinoma patients under Roblitinib (FGF401) drug treatment
Machine learning (ML) opens new perspectives in identifying predictive factors of efficacy among a large number of patients’ characteristics in oncology studies. The objective of this work was to combine ML with population pharmacokinetic/pharmacodynamic (PK/PD) modeling of tumor growth inhibition t...
Autores principales: | Wilbaux, Mélanie, Demanse, David, Gu, Yi, Jullion, Astrid, Myers, Andrea, Katsanou, Vasiliki, Meille, Christophe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9381917/ https://www.ncbi.nlm.nih.gov/pubmed/35728123 http://dx.doi.org/10.1002/psp4.12831 |
Ejemplares similares
-
A first-in-human phase 1/2 study of FGF401 and combination of FGF401 with spartalizumab in patients with hepatocellular carcinoma or biomarker-selected solid tumors
por: Chan, Stephen L., et al.
Publicado: (2022) -
FGF401 and vinorelbine synergistically mediate antitumor activity and vascular normalization in FGF19-dependent hepatocellular carcinoma
por: Huynh, Hung, et al.
Publicado: (2020) -
A framework to guide dose & regimen strategy for clinical drug development
por: Sander, Oliver, et al.
Publicado: (2021) -
Audits of 401(k) Plans
por: Group, Deloitte & Touche
Publicado: (2018) -
PPP3CB Inhibits Migration of G401 Cells via Regulating Epithelial-to-Mesenchymal Transition and Promotes G401 Cells Growth
por: Chen, Lei, et al.
Publicado: (2019)