Cargando…
Doppelgänger spotting in biomedical gene expression data
Doppelgänger effects (DEs) occur when samples exhibit chance similarities such that, when split across training and validation sets, inflates the trained machine learning (ML) model performance. This inflationary effect causes misleading confidence on the deployability of the model. Thus, so far, th...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9382272/ https://www.ncbi.nlm.nih.gov/pubmed/35992056 http://dx.doi.org/10.1016/j.isci.2022.104788 |
_version_ | 1784769252016783360 |
---|---|
author | Wang, Li Rong Choy, Xin Yun Goh, Wilson Wen Bin |
author_facet | Wang, Li Rong Choy, Xin Yun Goh, Wilson Wen Bin |
author_sort | Wang, Li Rong |
collection | PubMed |
description | Doppelgänger effects (DEs) occur when samples exhibit chance similarities such that, when split across training and validation sets, inflates the trained machine learning (ML) model performance. This inflationary effect causes misleading confidence on the deployability of the model. Thus, so far, there are no tools for doppelgänger identification or standard practices to manage their confounding implications. We present doppelgangerIdentifier, a software suite for doppelgänger identification and verification. Applying doppelgangerIdentifier across a multitude of diseases and data types, we show the pervasive nature of DEs in biomedical gene expression data. We also provide guidelines toward proper doppelgänger identification by exploring the ramifications of lingering batch effects from batch imbalances on the sensitivity of our doppelgänger identification algorithm. We suggest doppelgänger verification as a useful procedure to establish baselines for model evaluation that may inform on whether feature selection and ML on the data set may yield meaningful insights. |
format | Online Article Text |
id | pubmed-9382272 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-93822722022-08-18 Doppelgänger spotting in biomedical gene expression data Wang, Li Rong Choy, Xin Yun Goh, Wilson Wen Bin iScience Article Doppelgänger effects (DEs) occur when samples exhibit chance similarities such that, when split across training and validation sets, inflates the trained machine learning (ML) model performance. This inflationary effect causes misleading confidence on the deployability of the model. Thus, so far, there are no tools for doppelgänger identification or standard practices to manage their confounding implications. We present doppelgangerIdentifier, a software suite for doppelgänger identification and verification. Applying doppelgangerIdentifier across a multitude of diseases and data types, we show the pervasive nature of DEs in biomedical gene expression data. We also provide guidelines toward proper doppelgänger identification by exploring the ramifications of lingering batch effects from batch imbalances on the sensitivity of our doppelgänger identification algorithm. We suggest doppelgänger verification as a useful procedure to establish baselines for model evaluation that may inform on whether feature selection and ML on the data set may yield meaningful insights. Elsevier 2022-07-19 /pmc/articles/PMC9382272/ /pubmed/35992056 http://dx.doi.org/10.1016/j.isci.2022.104788 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Wang, Li Rong Choy, Xin Yun Goh, Wilson Wen Bin Doppelgänger spotting in biomedical gene expression data |
title | Doppelgänger spotting in biomedical gene expression data |
title_full | Doppelgänger spotting in biomedical gene expression data |
title_fullStr | Doppelgänger spotting in biomedical gene expression data |
title_full_unstemmed | Doppelgänger spotting in biomedical gene expression data |
title_short | Doppelgänger spotting in biomedical gene expression data |
title_sort | doppelgänger spotting in biomedical gene expression data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9382272/ https://www.ncbi.nlm.nih.gov/pubmed/35992056 http://dx.doi.org/10.1016/j.isci.2022.104788 |
work_keys_str_mv | AT wanglirong doppelgangerspottinginbiomedicalgeneexpressiondata AT choyxinyun doppelgangerspottinginbiomedicalgeneexpressiondata AT gohwilsonwenbin doppelgangerspottinginbiomedicalgeneexpressiondata |