Cargando…
Nonlinear optimal control of a mean-field model of neural population dynamics
We apply the framework of nonlinear optimal control to a biophysically realistic neural mass model, which consists of two mutually coupled populations of deterministic excitatory and inhibitory neurons. External control signals are realized by time-dependent inputs to both populations. Optimality is...
Autores principales: | Salfenmoser, Lena, Obermayer, Klaus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9382303/ https://www.ncbi.nlm.nih.gov/pubmed/35990368 http://dx.doi.org/10.3389/fncom.2022.931121 |
Ejemplares similares
-
Biophysically grounded mean-field models of neural populations under electrical stimulation
por: Cakan, Caglar, et al.
Publicado: (2020) -
Correction: Biophysically grounded mean-field models of neural populations under electrical stimulation
por: Cakan, Caglar, et al.
Publicado: (2021) -
Estimating and interpreting nonlinear receptive field of sensory neural responses with deep neural network models
por: Keshishian, Menoua, et al.
Publicado: (2020) -
Models of Acetylcholine and Dopamine Signals Differentially Improve Neural Representations
por: Holca-Lamarre, Raphaël, et al.
Publicado: (2017) -
Cross-Frequency Slow Oscillation–Spindle Coupling in a Biophysically Realistic Thalamocortical Neural Mass Model
por: Jajcay, Nikola, et al.
Publicado: (2022)