Cargando…
Ultrasound-assisted preparation of lactoferrin-EGCG conjugates and their application in forming and stabilizing algae oil emulsions
The aim of this study was to prepare lactoferrin-epigallocatechin-3-gallate (LF–EGCG) conjugates and to determine their ability to protect emulsified algal oil against aggregation and oxidation. LF–EGCG conjugates were formed using an ultrasound-assisted alkaline treatment. The ultrasonic treatment...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9382344/ https://www.ncbi.nlm.nih.gov/pubmed/35961190 http://dx.doi.org/10.1016/j.ultsonch.2022.106110 |
Sumario: | The aim of this study was to prepare lactoferrin-epigallocatechin-3-gallate (LF–EGCG) conjugates and to determine their ability to protect emulsified algal oil against aggregation and oxidation. LF–EGCG conjugates were formed using an ultrasound-assisted alkaline treatment. The ultrasonic treatment significantly improved the grafting efficiency of LF and EGCG and shortened the reaction time from 24 h to 40 min. Fourier transform infrared spectroscopy and circular dichroism spectroscopy analyses showed that the covalent/non-covalent complexes could be formed between LF and EGCG, with the C[bond, double bond]O and C—N groups playing an important role. The formation of the conjugates reduced the α-helix content and increased the random coil content of the LF. Moreover, the antioxidant activity of LF was significantly enhanced after conjugation with EGCG. LF–EGCG conjugates as emulsifiers were better at inhibiting oil droplet aggregation and oxidation than LF alone. This study demonstrates that ultrasound-assisted formation of protein–polyphenol conjugates can enhance the functional properties of the proteins, thereby extending their application as functional ingredients in nutritionally fortified foods. |
---|