Cargando…
Uncertainty Estimation in Medical Image Classification: Systematic Review
BACKGROUND: Deep neural networks are showing impressive results in different medical image classification tasks. However, for real-world applications, there is a need to estimate the network’s uncertainty together with its prediction. OBJECTIVE: In this review, we investigate in what form uncertaint...
Autores principales: | Kurz, Alexander, Hauser, Katja, Mehrtens, Hendrik Alexander, Krieghoff-Henning, Eva, Hekler, Achim, Kather, Jakob Nikolas, Fröhling, Stefan, von Kalle, Christof, Brinker, Titus Josef |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9382553/ https://www.ncbi.nlm.nih.gov/pubmed/35916701 http://dx.doi.org/10.2196/36427 |
Ejemplares similares
-
Hidden Variables in Deep Learning Digital Pathology and Their Potential to Cause Batch Effects: Prediction Model Study
por: Schmitt, Max, et al.
Publicado: (2021) -
Enhanced classifier training to improve precision of a convolutional neural network to identify images of skin lesions
por: Brinker, Titus J., et al.
Publicado: (2019) -
Reducing the Impact of Confounding Factors on Skin Cancer Classification via Image Segmentation: Technical Model Study
por: Maron, Roman C, et al.
Publicado: (2021) -
Skin Cancer Classification Using Convolutional Neural Networks: Systematic Review
por: Brinker, Titus Josef, et al.
Publicado: (2018) -
Artificial Intelligence and Its Effect on Dermatologists’ Accuracy in Dermoscopic Melanoma Image Classification: Web-Based Survey Study
por: Maron, Roman C, et al.
Publicado: (2020)